As noise pollution remains one of the biggest hurdles posed by thermal engines, increasing efforts are made to alleviate the generation of combustion noise from the early design stage of the chamber. Since the complexity of both modern chamber geometries and the combustion process itself precludes robust analytic solutions, and since the resonant, highly three-dimensional pressure field is difficult to be measured experimentally, focus is put on the numerical modeling of the process. However, in order to optimize the resources devoted to this simulation, an informed decision must be made on which formulations are followed. In this work, the experimental cyclic dispersion of the in-cylinder pressure is analyzed in two typical compression-ignited (CI) and spark-ignited (SI) engines. Acoustic signatures and pressure rise rates (PRRs) are derived from these data, showing how while the preponderance of flame front propagation and dependency of previous cycle in SI engine noise usually calls for multicycle, more complex turbulence modeling such as large Eddy simulation (LES), simpler unsteady Reynolds-averaged Navier-Stokes (URANS) formulations can accurately characterize the more consistent pressure spectra of CI thermal engines, which feature sudden autoignition as the main noise source.

References

1.
Torregrosa
,
A.
,
Broatch
,
A.
,
Novella
,
R.
, and
Mónico
,
L.
,
2011
, “
Suitability Analysis of Advanced Diesel Combustion Concepts for Emissions and Noise Control
,”
Energy
,
36
(
2
), pp.
825
838
.
2.
Scheie
,
E.
,
Pischinger
,
F.
, and
Reuter
,
U.
,
1989
, “
Preinjection-a Measure to Influence Exhaust Quality and Noise in Diesel Engines
,”
ASME J. Eng. Gas Turbines Power
,
111
(
3
), pp.
445
450
.
3.
Nor
,
M.
,
Fouladi
,
M.
,
Nahvi
,
H.
, and
Ariffin
,
A.
,
2008
, “
Index for Vehicle Acoustical Comfort Inside a Passenger Car
,”
Appl. Acoust.
,
69
(
4
), pp.
343
353
.
4.
Ozdor
,
N.
,
Dulger
,
M.
, and
Sher
,
E.
,
1994
, “
Cyclic Variability in Spark Ignition Engines a Literature Survey
,”
SAE
Paper No. 940987.
5.
Fansler
,
T. D.
, and
Wagner
,
R. M.
,
2015
, “
Cyclic Dispersion in Engine Combustion-Introduction by the Special Issue Editors
,”
Int. J. Engine Res.
,
16
(
3
), pp.
255
259
.
6.
Finney
,
C. E.
,
Kaul
,
B. C.
,
Daw
,
C. S.
,
Wagner
,
R. M.
,
Edwards
,
K. D.
, and
Green Jr
,
J. B.
,
2015
, “
A Review of Deterministic Effects in Cyclic Variability of Internal Combustion Engines
,”
Int. J. Engine Res.
,
16
(
3
), pp.
366
378
.
7.
Schmillen
,
K.
, and
Wolschendorf
,
J.
,
1989
, “
Cycle-to-Cycle Variations of Combustion Noise in Diesel
,”
SAE
Paper No. 890129.
8.
Acri
,
A.
,
Nijman
,
E.
,
Klanner
,
M.
,
Offner
,
G.
, and
Corradi
,
R.
,
2018
, “
On the Influence of Cyclic Variability on Surface Noise Contribution Analysis of Internal Combustion Engines
,”
Appl. Acoust.
,
132
, pp.
97
108
.
9.
Fansler
,
T. D.
,
Reuss
,
D. L.
,
Sick
,
V.
, and
Dahms
,
R. N.
,
2015
, “
Invited Review: Combustion Instability in Spray-Guided Stratified-Charge Engines: A Review
,”
Int. J. Engine Res.
,
16
(
3
), pp.
260
305
.
10.
Zeng
,
W.
,
Sjöberg
,
M.
, and
Reuss
,
D. L.
,
2015
, “
Piv Examination of Spray-Enhanced Swirl Flow for Combustion Stabilization in a Spray-Guided Stratified-Charge Direct-Injection Spark-Ignition Engine
,”
Int. J. Engine Res.
,
16
(
3
), pp.
306
322
.
11.
Priede
,
T.
,
1960
, “
Relation Between Form of Cylinder-Pressure Diagram and Noise in Diesel Engines
,”
Proc. Inst. Mech. Eng.: Automob. Div.
,
14
(
1
), pp.
63
97
.
12.
Priede
,
T.
, and
Grover
,
E.
,
1966
, “
Paper 2: Noise of Industrial Diesel Engines
,”
Proc. Inst. Mech. Eng.
,
181
(
3
), pp.
73
89
.
13.
Strahle
,
W. C.
,
1977
, “
Combustion Randomness and Diesel Engine Noise: Theory and Initial Experiments
,”
Combust. Flame
,
28
, pp.
279
290
.
14.
Boesch
,
N. J.
,
1987
, “
The Development of Low-Noise DI Diesel Engines
,”
SAE
Trans., 96, pp. 1522–1531. http://www.jstor.org/stable/44470815
15.
Kavuri
,
C.
,
Singh
,
S.
,
Krishnan
,
S. R.
,
Srinivasan
,
K. K.
, and
Ciatti
,
S.
,
2014
, “
Computational Analysis of Combustion of High and Low Cetane Fuels in a Compression Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
12
), p.
121506
.
16.
Busch
,
S.
,
Zha
,
K.
,
Warey
,
A.
,
Pesce
,
F.
, and
Peterson
,
R.
,
2016
, “
On the Reduction of Combustion Noise by a Close-Coupled Pilot Injection in a Small-Bore Direct-Injection Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
138
(
10
), p.
102804
.
17.
Hickling
,
R.
,
Feldmaier
,
D. A.
, and
Sung
,
S. H.
,
1979
, “
Knock-Induced Cavity Resonances in Open Chamber Diesel Engines
,”
J. Acoust. Soc. Am
,
65
(
5
), pp.
1474
1479
.
18.
Torregrosa
,
A. J.
,
Broatch
,
A.
,
Margot
,
X.
, and
Marant
,
V.
,
2003
, “
Combustion Chamber Resonances in Direct Injection Automotive Diesel Engines: A Numerical Approach
,”
Int. J. Engine Res
.,
5
(
1
), pp.
83
91
.http://journals.sagepub.com/doi/10.1243/146808704772914264
19.
Broatch
,
A.
,
Margot
,
X.
,
Gil
,
A.
, and
Donayre
,
C.
,
2007
, “
Computational Study of the Sensitivity to Ignition Characteristics of the Resonance in DI Diesel Engine Combustion Chambers
,”
Eng. Comput.
,
24
(
1
), pp.
77
96
.
20.
Torregrosa
,
A. J.
,
Broatch
,
A.
,
Gil
,
A.
, and
Gomez-Soriano
,
J.
,
2018
, “
Numerical Approach for Assessing Combustion Noise in Compression-Ignitied Diesel Engines
,”
Appl. Acoust.
,
135
, pp.
91
100
.
21.
Torregrosa
,
A. J.
,
Broatch
,
A.
,
García-Tíscar
,
J.
, and
Gomez-Soriano
,
J.
,
2018
, “
Modal Decomposition of the Unsteady Flow Field in Compression-Ignited Combustion Chambers
,”
Combust. Flame
,
188
, pp.
469
482
.
22.
Young
,
M. B.
,
1981
, “
Cyclic Dispersion in the Homogeneous-Charge Spark-Ignition Engine-a Literature Survey
,”
SAE
Paper No. 810020.
23.
Abraham
,
P. S.
,
Yang
,
X.
,
Gupta
,
S.
,
Kuo
,
T.-W.
,
Reuss
,
D. L.
, and
Sick
,
V.
,
2015
, “
Flow-Pattern Switching in a Motored Spark Ignition Engine
,”
Int. J. Engine Res
,
16
(
3
), pp.
323
339
.
24.
Wu
,
B.
,
Ma
,
Y.
,
Yu
,
X.
,
Gu
,
W.
,
Li
,
Y.
, and
Su
,
W.
,
2015
, “
Effects of Exhaust Gas Recycle Loop Layout and Retarded Intake Valve Closing on Variations in Combustion in a Heavy-Duty Diesel Engine
,”
Int. J. Engine Res.
,
16
(
3
), pp.
340
355
.
25.
Laget
,
O.
,
Reveille
,
B.
,
Martinez
,
L.
,
Truffin
,
K.
,
Habchi
,
C.
, and
Angelberger
,
C.
,
2011
, “
LES Calculations of a Four Cylinder Engine
,”
SAE
Paper No. 2011-01-0832.
26.
Truffin
,
K.
,
Angelberger
,
C.
,
Richard
,
S.
, and
Pera
,
C.
,
2015
, “
Using Large-Eddy Simulation and Multivariate Analysis to Understand the Sources of Combustion Cyclic Variability in a Spark-Ignition Engine
,”
Combust. Flame
,
162
(
12
), pp.
4371
4390
.
27.
Misdariis
,
A.
,
Vermorel
,
O.
, and
Poinsot
,
T.
,
2015
, “
Les of Knocking in Engines Using Dual Heat Transfer and Two-Step Reduced Schemes
,”
Combust. Flame
,
162
(
11
), pp.
4304
4312
.
28.
Rassweiler
,
G. M.
,
Withrow
,
L.
, and
Cornelius
,
W.
,
1940
, “
Engine Combustion and Pressure Development-Effects of Mixture Ratio, Spark Position, and Throttle Opening on Flame Pictures and Pressure Cards
,”
SAE
Paper No. 400127.
29.
Pope
,
S. B.
,
2004
, “
Ten Questions concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
(
1
), p.
35
.
30.
Scarcelli
,
R.
,
Richards
,
K.
,
Pomraning
,
E.
,
Senecal
,
P.
,
Wallner
,
T.
, and
Sevik
,
J.
,
2016
, “
Cycle-to-Cycle Variations in Multi-Cycle Engine RANS Simulations
,”
SAE
Paper No. 2016-01-0593.
31.
Yakhot
,
V.
, and
Orszag
,
S.
,
1986
, “
Renormalization Group Analysis of Turbulence
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
32.
Wilcox
,
D. C.
,
2008
, “
Formulation of the k-w Turbulence Model Revisited
,”
AIAA J.
,
46
(
11
), pp.
2823
2838
.
33.
Klos
,
D.
, and
Kokjohn
,
S. L.
,
2015
, “
Investigation of the Sources of Combustion Instability in Low-Temperature Combustion Engines Using Response Surface Models
,”
Int. J. Engine Res
,
16
(
3
), pp.
419
440
.
34.
Jia
,
M.
,
Dempsey
,
A. B.
,
Wang
,
H.
,
Li
,
Y.
, and
Reitz
,
R. D.
,
2015
, “
Numerical Simulation of Cyclic Variability in Reactivity-Controlled Compression Ignition Combustion With a Focus on the Initial Temperature at Intake Valve Closing
,”
Int. J. Engine Res.
,
16
(
3
), pp.
441
460
.
35.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
36.
Tillou
,
J.
,
Michel
,
J.-B.
,
Angelberger
,
C.
, and
Veynante
,
D.
,
2014
, “
Assessing Les Models Based on Tabulated Chemistry for the Simulation of Diesel Spray Combustion
,”
Combust. Flame
,
161
(
2
), pp.
525
540
.
37.
Torregrosa
,
A.
,
Broatch
,
A.
,
Martín
,
J.
, and
Monelletta
,
L.
,
2007
, “
Combustion Noise Level assessment in direct Injection Diesel Engines by Means of in-Cylinder Pressure Components
,”
Meas. Sci. Technol.
,
18
(
7
), p.
2131
.
38.
López
,
J. J.
,
Molina
,
S.
,
García
,
A.
,
Valero-Marco
,
J.
, and
Justet
,
F.
,
2017
, “
Analysis of the Potential of a New Automotive Two-Stroke Gasoline Engine Able to Operate in Spark Ignition and Controlled Autoignition Combustion Modes
,”
Appl. Therm. Eng.
,
126
, pp.
834
847
.
39.
Payri
,
F.
,
Broatch
,
A.
,
Tormos
,
B.
, and
Marant
,
V.
,
2005
, “
New Methodology for in-Cylinder Pressure Analysis in Direct Injection Diesel Engines-Application to Combustion Noise
,”
Meas. Sci. Technol.
,
16
(
2
), p.
540
.
40.
Payri
,
F.
,
Broatch
,
A.
,
Margot
,
X.
, and
Monelletta
,
L.
,
2008
, “
Sound Quality Assessment of Diesel Combustion Noise Using in-Cylinder Pressure Components
,”
Meas. Sci. Technol.
,
20
(
1
), p.
015107
.http://iopscience.iop.org/article/10.1088/0957-0233/20/1/015107/meta
41.
Yang
,
J.
, and
Anderson
,
R.
,
1998
, “
A New Criterion for Judging Si Engine in-Cylinder Pressure Development for Its Effect on Combustion Noise
,”
ASME J. Eng. Gas Turbines Power
,
120
(
3
), pp.
664
668
.
42.
Chung
,
J.
,
Oh
,
J.
, and
Sunwoo
,
M.
,
2017
, “
A Real-Time Combustion Control With Reconstructed in-Cylinder Pressure by Principal Component Analysis for a Crdi Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
062802
.
43.
Som
,
S.
, and
Aggarwal
,
S.
,
2010
, “
Effects of Primary Breakup Modeling on Spray and Combustion Characteristics of Compression Ignition Engines
,”
Combust. Flame
,
157
(
6
), pp.
1179
1193
.
44.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using Rng κ-ε Models
,”
Combust Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
45.
Stanković
,
L.
, and
Böhme
,
J. F.
,
1999
, “
Time–Frequency Analysis of Multiple Resonances in Combustion Engine Signals
,”
Signal Process.
,
79
(
1
), pp.
15
28
.
46.
Shahlari
,
A. J.
,
Hocking
,
C.
,
Kurtz
,
E.
, and
Ghandhi
,
J.
,
2013
, “
Comparison of Compression Ignition Engine Noise Metrics in Low-Temperature Combustion Regimes
,”
SAE Int. J. Engines
,
6
(
1
), pp.
541
552
.
47.
Broatch
,
A.
,
Margot
,
X.
,
Novella
,
R.
, and
Gomez-Soriano
,
J.
,
2017
, “
Impact of the Injector Design on the Combustion Noise of Gasoline Partially Premixed Combustion in a 2-Stroke Engine
,”
Appl. Therm. Eng.
,
119
, pp.
530
540
.
48.
Broatch
,
A.
,
Novella
,
R.
,
García-Tíscar
,
J.
, and
Gomez-Soriano
,
J.
,
2018
, “
Potential of Dual Spray Injectors for Optimising the Noise Emission of Gasoline Partially Premixed Combustion in a 2-Stroke HSDI CI Engine
,”
Appl. Therm. Eng.
, 134, pp.
369
378
.
49.
Austen
,
A. E. W.
, and
Priede
,
T.
,
1958
, “
Origins of Diesel Engine Noise
,”
SAE
Paper No. 590127.
50.
Anderton
,
D.
,
1979
, “
Relation Between Combustion System and Engine Noise
,”
SAE
Paper No. 790270.
51.
Russell
,
M. F.
, and
Haworth
,
R.
,
1985
, “
Combustion Noise From High Speed Direct Injection Diesel Engines
,”
SAE
Paper No. 850973.
52.
Giakoumis
,
E. G.
,
Dimaratos
,
A. M.
, and
Rakopoulos
,
C. D.
,
2011
, “
Experimental Study of Combustion Noise Radiation During Transient Turbocharged Diesel Engine Operation
,”
Energy
,
36
(
8
), pp.
4983
4995
.
You do not currently have access to this content.