Abstract

This paper presents a new structural bump foil model that can handle all operating conditions from start-up to full speed. The model is based on a nonlinear contact algorithm with friction and gaps. The top foil is modeled as a curved beam while bump foil uses a coupled truss model. The model considers the gaps between the bump foil and the bearing casing, between the bump foil and the top foil and between the rotor and the top foil. Thus, any numerical interference between the rotor and the top foil is avoided. A mixed lubrication model is used for the thin film pressures. Following this algorithm, contact pressures appear if the film thickness is less than three times the equivalent roughness of the rotor and of the top foil. Fluid pressures are calculated from numerical solutions of Reynolds equation while contact pressures, if present, are calculated with the model of Greenwood and Williamson. The model is validated by comparisons with the experimental results obtained for start-up operating conditions of a first-generation foil bearing of 38.1 mm diameter with static loads of 10–50 N. Theoretical predictions of the start-up torque and takeoff speed compare well with experimental results. It is also shown how manufacturing bump height errors can explain the differences between theoretical and experimental predictions. Further validations are presented for the same bearing operating at high speeds (30, 45, and 55 krpm) and heavy static loads (up to 200 N). The calculated minimum film thickness and attitude angle are compared with experimental data from the literature.

References

1.
Heshmat
,
H.
,
Walowit
,
J. A.
, and
Pinkus
,
O.
,
1983
, “
Analysis of Gas-Lubricated Foil Journal Bearings
,”
ASME J. Lubr. Technol.
,
105
(
4
), pp.
647
655
.10.1115/1.3254697
2.
Branagan
,
M.
,
Griffin
,
D.
,
Goyne
,
C.
, and
Untaroiu
,
A.
,
2015
, “
Compliant Gas Foil Bearings and Analysis Tools
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
054001
.10.1115/1.4031628
3.
Iordanoff
,
I.
,
1999
, “
Analysis of an Aerodynamic Compliant Foil Thrust Bearing: Method for a Rapid Design
,”
ASME J. Tribol.
,
121
(
4
), pp.
816
822
.10.1115/1.2834140
4.
Peng
,
J. P.
, and
Carpino
,
M.
,
1993
, “
Calculation of Stiffness and Damping Coefficients for Elastically Supported Gas Foil Bearings
,”
ASME J. Tribol.
,
115
(
1
), pp.
20
27
.10.1115/1.2920982
5.
Rubio
,
D.
, and
San Andres
,
L.
,
2007
, “
Structural Stiffness, Dry Friction Coefficient, and Equivalent Viscous Damping in a Bump-Type Foil Gas Bearing
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
494
502
.10.1115/1.2360602
6.
Kim
,
T. H.
, and
San Andrés
,
L.
,
2009
, “
Effect of Side Feed Pressurization on the Dynamic Performance of Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
,
131
(
1
), p.
012501
.10.1115/1.2966421
7.
Ryu
,
K.
,
2012
, “
Prediction of Axial and Circumferential Flow Conditions in a High Temperature Foil Bearing With Axial Cooling Flow
,”
ASME J. Eng. Gas Turbines Power
,
134
(
9
), p.
094503
.10.1115/1.4006841
8.
Bonello
,
P.
, and
Pham
,
H. M.
,
2014
, “
The Efficient Computation of the Nonlinear Dynamic Response of a Foil-Air Bearing Rotor System
,”
J. Sound Vib.
,
333
(
15
), pp.
3459
3478
.10.1016/j.jsv.2014.03.001
9.
Carpino
,
M.
,
Medvetz
,
L. A.
, and
Peng
,
J. P.
,
1994
, “
Effects of Membrane Stresses in the Prediction of Foil Bearing Performance
,”
Tribol. Trans.
,
37
(
1
), pp.
43
50
.10.1080/10402009408983264
10.
Peng
,
J. P.
, and
Carpino
,
M.
,
1997
, “
Finite Element Approach to the Prediction of Foil Bearing Rotor Dynamic Coefficients
,”
ASME J. Tribol.
,
119
(
1
), pp.
85
90
.10.1115/1.2832484
11.
Carpino
,
M.
, and
Talmage
,
G. A.
,
2003
, “
Fully Coupled Finite Element Formulation for Elastically Supported Foil Journal Bearings
,”
Tribol. Trans.
,
46
(
4
), pp.
560
565
.10.1080/10402000308982664
12.
Bruckner
,
R. J.
,
2004
, “
Simulation and Modeling of the Hydrodynamic, Thermal and Structural Behavior of Foil Thrust Bearings
,” Doctoral dissertation, Case Western Reserve University, Cleveland, OH.
13.
San Andrés
,
L.
, and
Kim
,
T. H.
,
2009
, “
Analysis of Gas Foil Bearings Integrating FE Top Foil Models
,”
Tribol. Int.
,
42
(
1
), pp.
111
120
.10.1016/j.triboint.2008.05.003
14.
Kim
,
D.
, and
Park
,
S.
,
2009
, “
Hydrostatic Air Foil Bearings: Analytical and Experimental Investigations
,”
Tribol. Int.
,
42
(
3
), pp.
413
425
.10.1016/j.triboint.2008.08.001
15.
Leister
,
T.
,
Baum
,
C.
, and
Seemann
,
W.
,
2017
, “
Computational Analysis of Foil Air Journal Bearings Using a Runtime-Efficient Segmented Foil Model
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021115
.
16.
Lee
,
D.-H.
,
Kim
,
Y.-C.
, and
Kim
,
K. W.
,
2008
, “
The Static Performance Analysis of Foil Journal Bearings Considering Three-Dimensional Shape of the Foil Structure
,”
ASME J. Tribol.
,
130
(
3
), p.
031102
.10.1115/1.2913538
17.
Lee
,
D. H.
,
Kim
,
Y. C.
, and
Kim
,
K. W.
,
2010
, “
The Effect of Coulomb Friction on the Static Performance of Foil Journal Bearings
,”
Tribol. Int.
,
43
(
5–6
), pp.
1065
1072
.10.1016/j.triboint.2009.12.048
18.
Lehn
,
A.
,
Mahner
,
M.
, and
Schweizer
,
B.
,
2016
, “
Elasto-Gasdynamic Modeling of Air Foil Thrust Bearings With a Two-Dimensional Shell Model for Top and Bump Foil
,”
Tribol. Int.
,
100
, pp.
48
59
.10.1016/j.triboint.2015.11.011
19.
Barzem
,
L.
,
Bou-Said
,
B.
,
Rocchi
,
J.
, and
Grau
,
G.
,
2013
, “
Aero-Elastic Bearing Effects on Rotor Dynamics: A Numerical Analysis
,”
Lubr. Sci.
,
25
(
7
), pp.
463
478
.10.1002/ls.1218
20.
Larsen
,
J. S.
,
Varela
,
A. C.
, and
Santos
,
I. F.
,
2014
, “
Numerical and Experimental Investigation of Bump Foil Mechanical Behavior
,”
Tribol. Int.
,
74
, pp.
46
56
.10.1016/j.triboint.2014.02.004
21.
Zywica
,
G.
,
2011
, “
The Static Performance Analysis of the Foil Bearing Structure
,”
Acta Mech. Autom.
,
5
(
4
), pp.
119
122
.
22.
Temis
,
Y. M.
,
Temis
,
M. Y.
, and
Meshcheryakov
,
A. B.
,
2011
, “
Gas-Dynamics Foil Bearing Model
,”
J. Frict. Wear
,
32
(
3
), pp.
212
220
.10.3103/S1068366611030111
23.
Liu
,
J.
, and
Du
,
F.
,
2012
, “
Simulation of Compliant Bump Foil Journal Bearing Using Coupled Reynolds Equation and Finite Element Model Method
,”
Adv. Mater. Res.
,
479–481
, pp.
2499
2503
.10.4028/www.scientific.net/AMR.479-481.2499
24.
Fatu
,
A.
, and
Arghir
,
M.
,
2017
, “
Numerical Analysis of the Impact of Manufacturing Errors on the Structural Stiffness of Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041506
.10.1115/1.4038042
25.
Le Lez
,
S.
,
Arghir
,
M.
, and
Frene
,
J.
,
2007
, “
A New Bump-Type Foil Bearing Structure Analytical Model
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
1047
1057
.10.1115/1.2747638
26.
Hryniewicz
,
P.
,
Wodtke
,
M.
,
Olszewski
,
A.
, and
Rzadkowski
,
R.
,
2009
, “
Structural Properties of Foil Bearings: A Closed Form Solution Validated With Finite Element Analysis
,”
Tribol. Trans.
,
52
(
4
), pp.
435
446
.10.1080/10402000802687916
27.
Feng
,
K.
, and
Kaneko
,
S.
,
2010
, “
Analytical Model of Bump-Type Foil Bearings Using a Link-Spring Structure and a Finite Element Shell Model
,”
ASME J. Tribol.
,
132
(
2
), p.
021706
.10.1115/1.4001169
28.
Gad
,
A. M.
, and
Kaneko
,
S.
,
2014
, “
A New Structural Stiffness Model for Bump-Type Foil Bearings: Application to Generation II Gas Lubricated Foil Thrust Bearing
,”
ASME J. Tribol.
,
136
(
4
), p.
041701
.10.1115/1.4027601
29.
Von Osmanski
,
S.
,
Larsen
,
J. S.
, and
Santos
,
I. F.
,
2017
, “
A Fully Coupled Air Foil Bearing Model Considering Friction—Theory & Experiment
,”
J. Sound Vib.
,
400
, pp.
660
679
.10.1016/j.jsv.2017.04.008
30.
Hoffmann
,
R.
,
Munz
,
O.
,
Pronobis
,
T.
,
Barth
,
E.
, and
Liebich
,
R.
,
2018
, “
A Valid Method of Gas Foil Bearing Parameter Estimation: A Model Anchored on Experimental Data
,”
J. Mech. Eng. Sci.
,
232
(
24
), pp.
4510
4527
.10.1177/0954406216667966
31.
Arghir
,
M.
, and
Benchekroun
,
O.
,
2019
, “
A Simplified Structural Model of Bump-Type Foil Bearings Based on Contact Mechanics Including Gaps and Friction
,”
Tribol. Int.
,
134
, pp.
129
144
.10.1016/j.triboint.2019.01.038
32.
Wriggers
,
P.
, and
Zavarise
,
G.
,
2006
,
Computational Contact Mechanics
, 2nd ed., Vol.
518
,
Springer-Verlag
,
Berlin
, pp.
195
226
.
33.
Rudloff
,
L.
,
Arghir
,
M.
,
Bonneau
,
O.
, and
Matta
,
P.
,
2011
, “
Experimental Analyses of a First Generation Foil Bearing. Start-Up Torque and Dynamic Coefficients
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
092501
.10.1115/1.4002909
34.
Ruscitto
,
D.
,
Mc Cormick
,
J.
, and
Gray
,
S.
,
1978
, “
Hydrodynamic Air Lubricated Compliant Surface Bearing for an Automotive Gas Turbine Engine I-Journal Bearing Performance
,” NASA, Lewis Research Center, Cleveland, OH, Report No.
NASA CR-135368
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780013529.pdf
35.
Arghir
,
M.
,
Lez
,
S. L.
, and
Frene
,
J.
,
2006
, “
Finite Volume Solution of the Compressible Reynolds Equation—Linear and Non Linear Analysis of Gas Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
220
(
7
), pp.
617
627
.10.1243/13506501JET161
36.
Patir
,
N.
, and
Cheng
,
H. S.
,
1979
, “
Application of Average Flow Model to Lubrication Between Rough Sliding Surfaces
,”
ASME J. Lubr. Technol.
,
101
(
2
), pp.
220
229
.10.1115/1.3453329
37.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London A
,
295
(
1442
), pp.
300
319
.10.1098/rspa.1966.0242
38.
Le Lez
,
S.
,
2007
, “
Caractéristiques Statiques et Dynamiques des Paliers à Feuilles
,” thèse de doctorat, Université de Poitiers, Poitiers, France.
You do not currently have access to this content.