Abstract

The expansion of renewable energy generation must go hand in hand with measures for reliable energy supply and energy storage. A combination of hydrogen and oxygen as storing media provided from electrolysis at high pressure and zero emission power plants is a very promising option. The Graz cycle is an oxy-fuel combined power cycle that can operate with internal H2/O2 combustion and steam as working fluid. It offers thermal efficiencies up to 68.5% (lower heating value - LHV). This work applies a second law analysis to the Graz cycle and determines its exergetic efficiency. Exergy destruction is broken down to the cycle's components, thus providing insights on the location and magnitude of the cycle's inefficiencies. A sensitivity analysis identifies the cycle's exergetic and energetic efficiency as a function of representative parameters, offering an approach for future improvements. The combination of the cycle with an electrolysis plant is subsequently analyzed as an electric energy storage system. The round trip efficiency of the storage and back conversion system is computed by taking into account the additional compression of the reactants. As part of this analysis, the effect of the electrolyzer's operational pressure is studied by comparing several commercial electrolyzers.

References

1.
Kanniche
,
M.
,
Le Moullec
,
Y.
,
Authier
,
O.
,
Hagi
,
H.
,
Domitille
,
B.
,
Neveux
,
T.
, and
Louis-Louisy
,
M.
,
2017
, “
Up-to-Date CO2 Capture in Thermal Power Plants
,”
Energy Procedia
,
114
, pp.
95
103
.10.1016/j.egypro.2017.03.1152
2.
Thorbergsson
,
E.
,
2015
, “
Oxy-Fuel Combustion Combined Cycles for Carbon Capture
,” Ph.D. thesis,
Chalmers University of Technology
,
Göteborg, Sweden
.
3.
IEA
, 2019, “
World Energy Outlook
,” International Energy Agency, Paris, France, Aug. 13, 2019, www.iea.org/weo/.
4.
Edenhofer
,
O.
,
2014
, “
IPCC 2014: Climate Change 2014 Mitigation of Climate Change Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
,” Cambridge University Press, Cambridge, NY.
5.
UNFCC
,
2016
, “
The Paris Agreement
,”
UNFCC, Bonn
,
Germany
, accessed Aug. 13, 2019, www.unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement.
6.
Kanniche
,
M.
,
Gros-Bonnivard
,
R.
,
Jaud
,
P.
,
Valle-Marcos
,
J.
,
Amann
,
J.-M.
, and
Bouallou
,
C.
,
2010
, “
Pre-Combustion, Post-Combustion and Oxy-Combustion in Thermal Power Plant for CO Capture
,”
Appl. Therm. Eng.
,
30
(
1
), pp.
53
62
.10.1016/j.applthermaleng.2009.05.005
7.
Penkuhn
,
M.
, and
Tsatsaronis
,
G.
,
2016
, “
Exergy Analysis of the Allam Cycle,” Fifth International Symposium-Supercritical CO2 Power Cycles
,
San Antonio, TX
,
Mar. 28–31
.
8.
AGORA
,
2018
, “
Agora—Dokumentation
,”
AGORA
,
Santa Clara, CA
, accessed Aug.13, 2019, www.agora-energiewende.de
9.
Stathopoulos
,
P.
,
Kuhn
,
P.
,
Wendler
,
J.
,
Tanneberger
,
T.
,
Terhaar
,
S.
,
Paschereit
,
C. O.
,
Schmalhofer
,
C.
,
Griebel
,
P.
, and
Aigner
,
M.
,
2016
, “
Emissions of a Wet Premixed Flame of Natural Gas and a Mixture With Hydrogen at High Pressure
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041507
.10.1115/1.4034687
10.
Soufi
,
M. G.
,
Fujii
,
T.
,
Sugimoto
,
K.
, and
Asano
,
H.
,
2004
, “
A New Rankine Cycle for Hydrogen-Fired Power Generation Plants and Its Exergetic Efficiency
,”
Int. J. Exergy
,
1
(
1
), pp.
29
46
.10.1504/IJEX.2004.004732
11.
Sanz
,
W.
,
Braun
,
M.
,
Jericha
,
H.
, and
Platzer
,
M.
,
2016
, “
Adapting the Zero-Emission Graz Cycle for Hydrogen Combustion and Investigation of Its Part Load Behaviour
,”
ASME
Paper No. GT2016-57988.
12.
Miller
,
A.
,
Lewandowski
,
J.
,
Badyda
,
K.
,
Kiryk
,
S.
,
Milewski
,
J.
,
Hama
,
J.
, and
Iki
,
N.
,
2003
, “
Off-Design Analysis of the GRAZ Cycle Performance
,”
International Gas Turbine Congress
, Tokyo, Japan, Nov. 2–7, Paper No. IGTC2003Tokyo TS-089.
13.
Alexander
,
B.
,
2007
, “
Analysis and Optimization of the Graz Cycle: A Coal Fired Power Generation Scheme With Near-Zero Carbon Dioxide Emissions
,” B.Sc. thesis, Massachusetts Institute of Technology, Cambridge, MA.
14.
Thorbergsson
,
E.
, and
Grönstedt
,
T.
,
2016
, “
A Thermodynamic Analysis of Two Competing Mid-Sized Oxyfuel Combustion Combined Cycles
,”
J. Energy
,
2016
, pp.
1
14
.10.1155/2016/2438431
15.
IEA
,
2014
, “
Technology Roadmap—Energy Storage
,”
International Energy Agency
,
Paris, France
.
16.
Diaz-Gonzales
,
F.
,
Sumper
,
A.
, and
Gomis-Bellmunt
,
O.
,
2016
,
Energy Storage in Power Systems
,
Wiley
, Hoboken, NJ.
17.
Schimek
,
S.
,
Stathopoulos
,
P.
,
Tanneberger
,
T.
, and
Paschereit
,
C.
,
2015
, “
Blue Combustion. Stoichiometric Hydrogen-Oxygen Combustion Under Humidified Conditions
,”
ASME
Paper No. GT2015-43149.
18.
Tanneberger
,
T.
,
Schimek
,
S.
,
Kossatz
,
M.
,
Paschereit
,
C.
, and
Stathopoulos
,
P.
,
2017
, “
Development of a Swirl-Stabilized H2/O2 Combustion System Under Humidified Conditions
,”
Eighth European Combustion Meeting
, Dubrovnik, Croatia, Apr. 18–21.
19.
Stathopoulos
,
P.
,
Sleem
,
T.
, and
Paschereit
,
C.
,
2017
, “
Steam Generation With Stoichiometric Combustion of H2/O2 as a Way to Simultaneously Provide Primary Control Reserve and Energy Storage
,”
Appl. Energy
,
205
, pp.
692
702
.10.1016/j.apenergy.2017.07.094
20.
Tanneberger
,
T.
,
Paschereit
,
C.
, and
Stathopoulos
,
P.
,
2019
, “
Efficiency Measurement Approach for a Hydrogen Oxyfuel Combustor
,”
ASME
Paper No. GT2019-91403.
21.
AspenTech
, 2019, “
AspenPlus Overview
,” AspenTech, accessed Aug. 14, 2019, https://www.aspentech.com/en/products/engineering/aspen-plus.
22.
AspenTech
, 2019, “
Property Method Overview
,” AspenTech, accessed Aug. 14, 2019, http://www.iapws.org/relguide/IAPWS-95.html
23.
Baehr
,
H.
, and
Kabelac
,
S.
,
2009
,
Thermodynamik
,
Springer Verlag
, Berlin.
24.
Calculation Tool, 2019, “
Calculation Tool
,” accessed Aug. 14, 2019, https://www.schweizer-fn.de/lueftung/feuchte/feuchte.php.
25.
Kotas
,
T.
,
1995
,
The Exergy Method of Thermal Plant Analysis
,
Krieger Publishing Company
,
Malabar, FL
.
26.
Cziesla
,
F.
,
Tsatsaronis
,
G.
, and
Gao
,
Z.
,
2006
, “
Avoidable Thermodynamic Inefficiencies and Costs in an Externally Fired Combined Cycle Power Plant
,”
Energy
,
31
(
10–11
), pp.
1472
1489
.10.1016/j.energy.2005.08.001
27.
Ibrahim
,
T. K.
,
Basrawi
,
F.
,
Awad
,
O. I.
,
Abdullah
,
A. N.
,
Najafi
,
G.
,
Mamat
,
R.
, and
Hagos
,
F. Y.
,
2017
, “
Thermal Performance of Gas Turbine Power Plant Based on Exergy Analysis
,”
Appl. Therm. Eng.
,
115
, p.
977
.10.1016/j.applthermaleng.2017.01.032
28.
Roy
,
A.
,
Watson
,
S.
, and
Infield
,
D.
,
2006
, “
Comparison of Electrical Energy Efficiency of Atmospheric and High-Pressure Electrolysers
,”
Int. J. Hydrogen Energy
,
31
(
14
), pp.
1964
1979
.10.1016/j.ijhydene.2006.01.018
29.
HZwei
,
2017
, “
HZwei—Das Magazin Fuer Wasserstoff und Brennzellen—Elektrolyseur
,”.
You do not currently have access to this content.