Abstract

This paper discusses the use of large eddy simulation (LES) to predict the performance of an annular combustion chamber in stable operating conditions and in the presence of self-exited dynamics. The availability of high-accuracy data taken in a full-scale combustion test facility allowed an extensive validation of the prediction capability. The analysis focuses on a small size heavy duty annular gas turbine whose size allows to test and compute the entire 360 deg combustion chamber. The comparison with measurements confirms that, if the correct operating conditions are implemented, LES is capable to discern between stable and unstable operating conditions, as well as predict several other engineering relevant parameters, although the model is sometime affected by a limited shift in frequency.The post processing of LES results in presence of combustion dynamics is not a trivial task. Here, the results of the simulations have been postprocessed by means of a triple decomposition method to determine a mean flow, a deterministic unsteady flow at the main instability frequency, and a turbulent stochastic flow. Such decomposition indicated the instability triggering mechanism together with the cross-talk mechanism between different components. This approach is currently used for design phase, while further validation is on-going to include different geometries and operating conditions with the goal of reducing both risks and number of tests.

References

1.
Liewen
,
T. C.
, and
Vigor
,
Y.
, eds.,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling
,
American Institute of Aeronautics and Astronautics
,
Liewen, Germany
.
2.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
751
764
.10.2514/2.6192
3.
Bauerheim
,
M.
,
Jaravel
,
T.
,
Esclapez
,
L.
,
Riber
,
E.
,
Gicquel
,
L. Y. M.
,
Cuenot
,
B.
, and
Rullaud
,
M.
, “
Multiphase Flow LES Study of the Fuel Split Effects on Combustion Instabilities in an Ultra-Low NOx Annular Combustor
,”
ASME
Paper No. GT2015-44139. 10.1115/GT2015-44139
4.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
RT Edwards, Inc
..
5.
Brookes
,
S. J.
,
Cant
,
R. S.
,
Dupere
,
I. D.
, and
Dowling
,
A. P.
, “
Computational Modelling of Self-Excited Combustion Instabilities
,”
ASME
Paper No. 2000-GT-0104. 10.1115/2000-GT-0104
6.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L.
,
Müller
,
J. D.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
11
), p.
3398
. 10.1016/j.combustflame.2012.06.016
7.
Dederichs
,
S.
,
Zarzalis
,
N.
, and
Beck
,
C.
, “
Validation of a Novel LES Approach Using Tabulated Chemistry for Thermoacoustic Instability Prediction in Gas Turbines
,”
ASME
Paper No. GT2015-43502. 10.1115/GT2015-43502
8.
Franzelli
,
B.
,
Riber
,
E.
,
Gicquel
,
L. Y.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulation of Combustion Instabilities in a Lean Partially Premixed Swirled Flame
,”
Combust. Flame
,
159
(
2
), p.
621
.10.1016/j.combustflame.2011.08.004
9.
Liu
,
W.
,
Ge
,
B.
,
Zang
,
S.
,
Li
,
M.
, and
Xu
,
W.
, “
Large Eddy Simulation of Combustion Instability of Low-Swirl Flames in a Multi-Nozzle Combustor
,”
ASME
Paper No. GT2017-65200. 10.1115/GT2017-65200
10.
Lacombe
,
F.
, and
Yoann
,
M.
,
2018
, “
Mixed Acoustic-Entropy Combustion Instabilities in a Model Aeronautical Combustor: Large Eddy Simulation and Reduced Order Modeling
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
031506
.10.1115/1.4037960
11.
Harvazinski
,
M. E.
,
Anderson
,
W. E.
, and
Charles
,
L. M.
,
2013
, “
Analysis of Self-Excited Combustion Instabilities Using Two-and Three-Dimensional Simulations
,”
J. Propul. Power
,
29
(
2
), pp.
396
409
.10.2514/1.B34732
12.
Lartigue
,
G.
,
Meier
,
U.
, and
Bérat
,
C.
,
2004
, “
Experimental and Numerical Investigation of Self-Excited Combustion Oscillations in a Scaled Gas Turbine Combustor
,”
Appl. Thermal Eng.
,
24
(
11–12
), pp.
1583
1592
.10.1016/j.applthermaleng.2003.10.026
13.
Worth
,
N. A.
, and
James
,
R. D.
,
2013
, “
Modal Dynamics of Self-Excited Azimuthal Instabilities in an Annular Combustion Chamber
,”
Combust. Flame
,
160
(
11
), pp.
2476
2489
.10.1016/j.combustflame.2013.04.031
14.
Balestri
,
M.
,
Cecchini
,
D.
, and
Cinti
,
V.
,
2004
, “
Unconventional Fuels Experimental Campaigns in Gas Turbine Combustors at ENEL Sesta Facility
,”
ASME
Paper No. GT2004-53274. 10.1115/GT2004-53274
15.
Cerutti
,
M.
,
Giannini
,
N.
,
Ceccherini
,
G.
,
Meloni
,
R.
,
Matoni
,
E.
,
Romano
,
C.
, and
Riccio
,
G.
,
2018
, “
Dry Low NOx Emissions Operability enhancement of a Heavy-Duty Gas Turbine by Means of Fuel Burner Design Development and Testing
,”
ASME
Paper No. GT2018-76587. 10.1115/GT2018-76587
16.
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
17.
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2002
, “
Modelling of Premixed Counterflow Flames Using the Flamelet Generated Manifold Method
,”
Combust. Theory Modell.
,
6
(
3
), pp.
463
478
.10.1088/1364-7830/6/3/305
18.
Pitsch
,
H.
,
Barths
,
H.
, and
Peters
,
N.
,
1996
, “
Three-Dimensional Modeling of NOx and Soot Formation in DI-Diesel Engines Using Detailed Chemistry Based on the Interactive Flamelet Approach
,”
SAE
Paper No. 962057. 10.4271/962057
19.
Zimont
,
V.
,
Polifke
,
W.
,
Bettelini
,
M.
, and
Weisenstein
,
W.
,
1998
, “
An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure
,”
ASME J. Gas Turbines Power.
,
120
(
3
), pp.
526
532
.10.1115/1.2818178
20.
CHEMIKIN PRO 15131,
2013
, “Reaction Design,” CHEMIKIN PRO, San Diego, CA.
You do not currently have access to this content.