Abstract

The prediction of time evolution of gas turbine (GT) performance is an emerging requirement of modern prognostics and health management (PHM), aimed at improving system reliability and availability, while reducing life cycle costs. In this work, a data-driven Bayesian hierarchical model (BHM) is employed to perform a probabilistic prediction of GT future behavior, thanks to its capability to deal with fleet data from multiple units. First, the theoretical background of the predictive methodology is outlined to highlight the inference mechanism and data processing for estimating BHM-predicted outputs. Then, the BHM approach is applied to both simulated and field data representative of GT degradation to assess its prediction reliability and grasp some rules of thumb for minimizing BHM prediction error. For the considered field data, the average values of the prediction errors are found to be lower than 1.0% or 1.7% for single- or multi-step prediction, respectively.

References

1.
Tahan
,
M.
,
Tsoutsanis
,
E.
,
Muhammad
,
M.
, and
Abdul Karim
,
Z. A.
,
2017
, “
Performance-Based Health Monitoring, Diagnostics and Prognostics for Condition-Based Maintenance of Gas Turbines: A Review
,”
Appl. Energy
,
198
, pp.
122
144
.10.1016/j.apenergy.2017.04.048
2.
Jardine
,
A.
,
Lin
,
D.
, and
Banjevic
,
D.
,
2006
, “
A Review of Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Signal Process.
,
20
(
7
), pp.
1483
1510
.10.1016/j.ymssp.2005.09.012
3.
Ayo-Imoru
,
R. M.
, and
Cilliers
,
A. C.
,
2018
, “
A Survey of the State of Condition-Based Maintenance (CBM) in the Nuclear Power Industry
,”
Ann. Nucl. Energy
,
112
, pp.
177
188
.10.1016/j.anucene.2017.10.010
4.
Khan
,
S.
, and
Yairi
,
T.
,
2018
, “
A Review of the Application of Deep Learning in System Health Management
,”
Mech. Syst. Signal Process.
,
107
, pp.
241
265
.10.1016/j.ymssp.2017.11.024
5.
Schneider
,
E.
,
Demircioglu Bussjaeger
,
S.
,
Franco
,
S.
, and
Therkorn
,
D.
,
2010
, “
Analysis of Compressor on-Line Washing to Optimize Gas Turbine Power Plant Performance
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
062001
.10.1115/1.4000133
6.
Li
,
Y. G.
, and
Nilkitsaranont
,
P.
,
2009
, “
Gas Turbine Performance Prognostic for Condition-Based Maintenance
,”
Appl. Energy
,
86
(
10
), pp.
2152
2161
.10.1016/j.apenergy.2009.02.011
7.
Kurz
,
R.
, and
Brun
,
K.
,
2009
, “
Degradation of Gas Turbine Performance in Natural Gas Service
,”
J. Nat. Gas Serv. Eng.
,
1
(
3
), pp.
95
102
.10.1016/j.jngse.2009.03.007
8.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2010
, “
Computational Fluid Dynamics Simulation of Fouling on Axial Compressor Stages
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
072401
.10.1115/1.4000128
9.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2011
, “
Numerical Analysis of the Effects of Nonuniform Surface Roughness on Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
072402
.10.1115/1.4002350
10.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
di Mare
,
L.
, and
Montomoli
,
F.
,
2016
, “
An Energy-Based Fouling Model for Gas Turbines: EBFOG
,”
ASME J. Turbomach.
,
139
(
2
), p.
021002
.10.1115/1.4034554
11.
Aldi
,
N.
,
Casari
,
N.
,
Dainese
,
D.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2018
, “
Quantitative Computational Fluid Dynamics Analyses of Particle Deposition in a Heavy-Duty Subsonic Axial Compressor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
082601
.10.1115/1.4038608
12.
Suman
,
A.
,
Morini
,
M.
,
Aldi
,
N.
,
Casari
,
N.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2017
, “
A Compressor Fouling Review Based on an Historical Survey of ASME Turbo Expo Papers
,”
ASME J. Turbomach.
,
139
(
4
), p.
041005
.10.1115/1.4035070
13.
Borguet
,
S.
, and
Leonard
,
O.
,
2008
, “
A Generalized Likelihood Ratio Test for Adaptive Gas Turbine Health Monitoring
,”
ASME
Paper No. GT2008-50117.10.1115/GT2008-50117
14.
Xiao-Sheng
,
S.
,
Wang
,
W.
,
Chang-Hua
,
H.
, and
Dong-Hau
,
Z.
,
2011
, “
Remaining Useful Life Estimation—A Review on the Statistical Data Driven Approaches
,”
Eur. J. Oper. Res.
,
213
, pp.
1
14
.10.1016/j.ejor.2010.11.018
15.
Asgari
,
H.
,
Venturini
,
M.
,
Chen
,
X.
, and
Sainudiin
,
R.
,
2014
, “
Modeling and Simulation of the Transient Behavior of an Industrial Power Plant Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
061601
.10.1115/1.4026215
16.
Puggina
,
N.
, and
Venturini
,
M.
,
2012
, “
Development of a Statistical Methodology for Gas Turbine Prognostics
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
022401
.10.1115/1.4004185
17.
Ceschini
,
G. F.
,
Gatta
,
N.
,
Venturini
,
M.
,
Hubauer
,
T.
, and
Murarasu
,
A.
,
2017
, “
A Comprehensive Approach for Detection, Classification and Integrated Diagnostics of Gas Turbine Sensors (DCIDS)
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032402
.10.1115/1.4037964
18.
Ceschini
,
G. F.
,
Manservigi
,
L.
,
Bechini
,
G.
, and
Venturini
,
M.
,
2018
, “
Detection and Classification of Sensor Anomalies in Gas Turbine Field Data
,”
ASME
Paper No. GT2018-75007.10.1115/GT2018-75007
19.
Manservigi
,
L.
,
Venturini
,
M.
,
Ceschini
,
G. F.
,
Bechini
,
G.
, and
Losi
,
E.
,
2019
, “
A General Diagnostic Methodology for Sensor Fault Detection, Classification and Overall Health State Assessment
,”
ASME
Paper No. GT2019-90055.
20.
Venturini
,
M.
, and
Puggina
,
N.
,
2012
, “
Prediction Reliability of a Statistical Methodology for Gas Turbine Prognostics
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
101601
.10.1115/1.4007064
21.
Cavarzere
,
A.
, and
Venturini
,
M.
,
2012
, “
Application of Forecasting Methodologies to Predict Gas Turbine Behavior Over Time
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
012401
.10.1115/1.4004184
22.
Zaidan
,
M. A.
,
Mills
,
A. R.
, and
Harrison
,
R. F.
,
2013
, “
Bayesian Framework for Aerospace Gas Turbine Engine Prognostics
,” IEEE Aerospace Conference (
AERO
), Big Sky, MT, March
2
9
.10.1109/AERO.2013.6496856
23.
Gebraeel
,
N.
,
Lawley
,
M.
,
Li
,
R.
, and
Ryan
,
J.
,
2005
, “
Residual-Life Distributions From Component Degradation Signals: A Bayesian Approach
,”
IIE Trans.
,
37
(
6
), pp.
543
557
.10.1080/07408170590929018
24.
Zaidan
,
M. A.
,
Mills
,
A. R.
,
Harrison
,
R. F.
, and
Fleming
,
P. J.
,
2015
, “
Bayesian Hierarchical Models for Aerospace Gas Turbine Engine Prognostics
,”
Expert Syst. Appl.
,
42
(
1
), pp.
539
553
.10.1016/j.eswa.2014.08.007
25.
Leone
,
G.
,
Cristaldi
,
L.
, and
Turrin
,
S.
,
2017
, “
A Data-Driven Prognostic Approach Based on Statistical Similarity: An Application to Industrial Circuit Breakers
,”
Measurement
,
108
(
2017
), pp.
163
170
.10.1016/j.measurement.2017.02.017
26.
Zaidan
,
M. A.
,
Relan
,
R.
,
Mills
,
A. R.
, and
Harrison
,
R. F.
,
2015
, “
Prognostics of Gas Turbine: An Integrated Approach
,”
Expert Syst. Appl.
,
42
(
22
), pp.
8472
8483
.10.1016/j.eswa.2015.07.003
27.
Zaidan
,
M. A.
,
Mills
,
A. R.
,
Harrison
,
R. F.
, and
Fleming
,
P. J.
,
2016
, “
Gas Turbine Engine Prognostics Using Bayesian Hierarchical Models: A Variational Approach
,”
Mech. Syst. Signal Process.
,
70–71
, pp.
120
140
.10.1016/j.ymssp.2015.09.014
28.
Tobias
,
J.
,
2001
, “
Forecasting Output Growth Rates and Median Output Growth Rates: A Hierarchical Bayesian Approach
,”
J. Forecasting
,
20
(
5
), pp.
297
314
.10.1002/for.800
29.
Lindley
,
D. V.
, and
Smith
,
A. F. M.
,
1972
, “
Bayes Estimates for the Linear Model
,”
J. R. Stat. Soc.
,
34
, pp.
1
41
.10.1111/j.2517-6161.1972.tb00885.x
30.
Venturini
,
M.
, and
Therkorn
,
D.
,
2013
, “
Application of a Statistical Methodology for Gas Turbine Degradation Prognostics to Alstom Field Data
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091603
.10.1115/1.4024952
31.
Meher-Homji
,
C.
,
Bromley
,
A. F.
, and
Stalder
,
J.-P.
,
2013
, “
Gas Turbine Performance Deterioration and Compressor Washing
,”
Second Middle East Turbomachinery Symposium
, Mar. 17–20, Doha, Qatar, pp.
1
43
.http://turbolab.tamu.edu/wp-content/uploads/sites/2/2018/08/METS2Tutorial5.pdf
32.
Tarabrin
,
A. P.
,
Schurovsky
,
V. A.
,
Bodrov
,
A. I.
, and
Stalder
,
J.-P.
,
1996
, “
An Analysis of Axial Compressors Fouling and a Cleaning Method of Their Blading
,”
ASME
Paper No. 96-GT-363.10.1115/96-GT-363
You do not currently have access to this content.