Abstract

Despite being good candidates for the reduction of pollutant emissions from gas turbines, burners operating in lean premixed prevaporized regimes often face stability issues and can be sensitive to perturbations. The swirling flow used to aerodynamically stabilize the flame can also lead to the appearance of a large-scale coherent flow structure known as the precessing vortex core (PVC). In this study, a swirl-stabilized combustor fed with liquid dodecane is studied at a globally lean operating condition with the help of high-speed diagnostics and dynamic mode decomposition (DMD) as the main postprocessing method. It is shown that the trace of a PVC originating inside the injector is still present in the fuel spray at the entrance of the chamber even though the aerodynamical structure itself is not detectable anymore. The perturbation of the fuel spray is then transmitted to the flame through local equivalence ratio fluctuations. It is observed that the PVC trace on the spray and thus on the flame can be suppressed by air flow modulations generated by a siren device. The suppression of this trace is shown to come from a decay of the aerodynamical structure itself rather than by a change in fuel mixing or vaporization. Analysis of the characteristic frequency of the PVC shows a frequency spread indicating a loss of coherence of the structure with the high-amplitude air flow rate fluctuations.

References

1.
Correa
,
S. M.
,
1998
, “
Power Generation and Aeropropulsion Gas Turbines: From Combustion Science to Combustion Technology
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
1793
1807
.10.1016/S0082-0784(98)80021-0
2.
Tacina
,
R. R.
,
1990
, “
Low NOx Potential of Gas Turbine Engines
,” 28th Aerospace Sciences Meeting, p.
550
.
3.
Lefebvre
,
A. H.
,
1995
, “
The Role of Fuel Preparation in Low-Emission Combustion
,”
ASME J. Eng. Gas Turbines Power
,
117
(
4
), pp.
617
654
.10.1115/1.2815449
4.
Moore
,
M. J.
,
1997
, “
NOx Emission Control in Gas Turbines for Combined Cycle Gas Turbine Plant
,”
Inst. Mech. Eng., Part A: J. Power Energy
, 211(1), pp.
43
52
.10.1243/0957650971536980
5.
Fritz
,
J.
,
Kröner
,
M.
, and
Sattelmayer
,
T.
,
2004
, “
Flashback in a Swirl Burner With Cylindrical Premixing Zone
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), p.
276
.10.1115/1.1473155
6.
Sommerer
,
Y.
,
Galley
,
D.
,
Poinsot
,
T.
,
Ducruix
,
S.
,
Lacas
,
F.
, and
Veynante
,
D.
,
2004
, “
Large Eddy Simulation and Experimental Study of Flashback and Blow-Off in a Lean Partially Premixed Swirled Burner
,”
J. Turbul.
,
5
, pp.
1
3
.https://www.tandfonline.com/doi/abs/10.1088/1468-5248/5/1/037
7.
Galley
,
D.
,
Ducruix
,
S.
,
Lacas
,
F.
, and
Veynante
,
D.
,
2011
, “
Mixing and Stabilization Study of a Partially Premixed Swirling Flame Using Laser Induced Fluorescence
,”
Combust. Flame
,
158
(
1
), pp.
155
171
.10.1016/j.combustflame.2010.08.004
8.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.10.1016/S1540-7489(02)80007-4
9.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
, “
Combustion Instabilities in Gas Turbine Engines(Operational Experience, Fundamental Mechanisms and Modeling)
,”
Progress in Astronautics and Aeronautics
, American Institute of Aeronautics and Astronautics, Reston, VA.
10.
Froud
,
D.
,
O'doherty
,
T.
, and
Syred
,
N.
,
1995
, “
Phase Averaging of the Precessing Vortex Core in a Swirl Burner Under Piloted and Premixed Combustion Conditions
,”
Combust. Flame
,
100
(
3
), pp.
407
412
.10.1016/0010-2180(94)00167-Q
11.
Wegner
,
B.
,
Maltsev
,
A.
,
Schneider
,
C.
,
Sadiki
,
A.
,
Dreizler
,
A.
, and
Janicka
,
J.
,
2004
, “
Assessment of Unsteady RANS in Predicting Swirl Flow Instability Based on LES and Experiments
,”
Int. J. Heat Fluid Flow
,
25
(
3
), pp.
528
536
.10.1016/j.ijheatfluidflow.2004.02.019
12.
Liang
,
H.
, and
Maxworthy
,
T.
,
2005
, “
An Experimental Investigation of Swirling Jets
,”
J. Fluid Mech.
,
525
, pp.
115
159
.10.1017/S0022112004002629
13.
Wang
,
S.
,
Yang
,
V.
,
Hsiao
,
G.
,
Hsieh
,
S.-Y.
, and
Mongia
,
H. C.
,
2007
, “
Large-Eddy Simulations of Gas-Turbine Swirl Injector Flow Dynamics
,”
J. Fluid Mech.
,
583
, p.
99
.10.1017/S0022112007006155
14.
Valera-Medina
,
A.
,
Syred
,
N.
, and
Griffiths
,
A.
,
2009
, “
Visualisation of Isothermal Large Coherent Structures in a Swirl Burner
,”
Combust. Flame
,
156
(
9
), pp.
1723
1734
.10.1016/j.combustflame.2009.06.014
15.
Syred
,
N.
, and
Beer
,
J. M.
,
1974
, “
Combustion in Swirling Flows: A Review
,”
Combust. Flame
,
23
(
2
), pp.
143
201
.10.1016/0010-2180(74)90057-1
16.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.10.1016/j.pecs.2005.10.002
17.
Syred
,
N.
,
Gupta
,
A. K.
, and
Beér
,
J. M.
,
1975
, “
Temperature and Density Gradient Changes Arising With the Precessing Vortex Core and Vortex Breakdown in Swirl Burners
,”
Symp. (Int.) Combust.
,
15
(
1
), pp.
587
597
.10.1016/S0082-0784(75)80330-4
18.
Selle
,
L.
,
2004
, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
(
4
), pp.
489
505
.10.1016/j.combustflame.2004.03.008
19.
Oberleithner
,
K.
,
Terhaar
,
S.
,
Rukes
,
L.
, and
Oliver Paschereit
,
C.
,
2013
, “
Why Nonuniform Density Suppresses the Precessing Vortex Core
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
121506
.10.1115/1.4025130
20.
Manoharan
,
K.
,
Hansford
,
S.
,
O' Connor
,
J.
, and
Hemchandra
,
S.
,
2015
, “
Instability Mechanism in a Swirl Flow Combustor: Precession of Vortex Core and Influence of Density Gradient
,”
ASME
Paper No. GT2015-42985.10.1115/GT2015-42985
21.
Oberleithner
,
K.
,
Stöhr
,
M.
,
Im
,
S. H.
,
Arndt
,
C. M.
, and
Steinberg
,
A. M.
,
2015
, “
Formation and Flame-Induced Suppression of the Precessing Vortex Core in a Swirl Combustor: Experiments and Linear Stability Analysis
,”
Combust. Flame
,
162
(
8
), pp.
3100
3114
.10.1016/j.combustflame.2015.02.015
22.
Syred
,
N.
,
Fick
,
W.
,
O'doherty
,
T.
, and
Griffiths
,
A. J.
,
1997
, “
The Effect of the Precessing Vortex Core on Combustion in a Swirl Burner
,”
Combust. Sci. Technol.
,
125
(
1–6
), pp.
139
157
.10.1080/00102209708935657
23.
Stöhr
,
M.
,
Boxx
,
I.
,
Carter
,
C.
, and
Meier
,
W.
,
2011
, “
Dynamics of Lean Blowout of a Swirl-Stabilized Flame in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2953
2960
.10.1016/j.proci.2010.06.103
24.
Taamallah
,
S.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2016
, “
Turbulent Flame Stabilization Modes in Premixed Swirl Combustion: Physical Mechanism and Karlovitz Number-Based Criterion
,”
Combust. Flame
,
166
, pp.
19
33
.10.1016/j.combustflame.2015.12.007
25.
Stöhr
,
M.
,
Boxx
,
I.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2012
, “
Experimental Study of Vortex-Flame Interaction in a Gas Turbine Model Combustor
,”
Combust. Flame
,
159
(
8
), pp.
2636
2649
.10.1016/j.combustflame.2012.03.020
26.
Renaud
,
A.
,
Ducruix
,
S.
,
Scouflaire
,
P.
, and
Zimmer
,
L.
,
2015
, “
Flame Shape Transition in a Swirl Stabilised Liquid Fueled Burner
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3365
3372
.10.1016/j.proci.2014.07.012
27.
Terhaar
,
S.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2015
, “
Key Parameters Governing the Precessing Vortex Core in Reacting Flows: An Experimental and Analytical Study
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3347
3354
.10.1016/j.proci.2014.07.035
28.
An
,
Q.
,
Kwong
,
W. Y.
,
Geraedts
,
B. D.
, and
Steinberg
,
A. M.
,
2016
, “
Coupled Dynamics of Lift-Off and Precessing Vortex Core Formation in Swirl Flames
,”
Combust. Flame
,
168
, pp.
228
239
.10.1016/j.combustflame.2016.03.011
29.
Stöhr
,
M.
,
Arndt
,
C. M.
, and
Meier
,
W.
,
2013
, “
Effects of Damköhler Number on Vortex–Flame Interaction in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3107
3115
.10.1016/j.proci.2012.06.086
30.
Steinberg
,
A. M.
,
Boxx
,
I.
,
Stöhr
,
M.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2010
, “
Flow–Flame Interactions Causing Acoustically Coupled Heat Release Fluctuations in a Thermo-Acoustically Unstable Gas Turbine Model Combustor
,”
Combust. Flame
,
157
(
12
), pp.
2250
2266
.10.1016/j.combustflame.2010.07.011
31.
Boxx
,
I.
,
Arndt
,
C. M.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2012
, “
High-Speed Laser Diagnostics for the Study of Flame Dynamics in a Lean Premixed Gas Turbine Model Combustor
,”
Exp. Fluids
,
52
(
3
), pp.
555
567
.10.1007/s00348-010-1022-x
32.
Johchi
,
A.
,
Zimmer
,
L.
, and
Tanahashi
,
M.
,
2014
, “
Investigation on the Acoustic Behavior of a Turbulent Swirl-Stabilized Combustor Fed With Liquid Fuel
,”
17th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
, July, pp.
7
10
.
33.
Khalil
,
S.
,
Hourigan
,
K.
, and
Thompson
,
M. C.
,
2006
, “
Response of Unconfined Vortex Breakdown to Axial Pulsing
,”
Phys. Fluids
,
18
(
3
), p.
038102
.10.1063/1.2180290
34.
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2012
, “
Nonlinear Interaction Between a Precessing Vortex Core and Acoustic Oscillations in a Turbulent Swirling Flame
,”
Combust. Flame
,
159
(
8
), pp.
2650
2668
.10.1016/j.combustflame.2012.04.002
35.
Alekseenko
,
S. V.
,
Dulin
,
V. M.
,
Kozorezov
,
Y.
, and
Markovich
,
D. M.
,
2012
, “
Effect of High-Amplitude Forcing on Turbulent Combustion Intensity and Vortex Core Precession in a Strongly Swirling Lifted Propane/Air Flame
,”
Combust. Sci. Technol.
,
184
(
10–11
), pp.
1862
1890
.10.1080/00102202.2012.695239
36.
Terhaar
,
S.
,
Ćosić
,
B.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Suppression and Excitation of the Precessing Vortex Core by Acoustic Velocity Fluctuations: An Experimental and Analytical Study
,”
Combust. Flame
,
172
, pp.
234
251
.10.1016/j.combustflame.2016.06.013
37.
Iudiciani
,
P.
, and
Duwig
,
C.
,
2011
, “
Large Eddy Simulation of the Sensitivity of Vortex Breakdown and Flame Stabilisation to Axial Forcing
,”
Flow, Turbul. Combust.
,
86
(
3–4
), pp.
639
666
.10.1007/s10494-011-9327-2
38.
Renaud
,
A.
,
Ducruix
,
S.
, and
Zimmer
,
L.
,
2017
, “
Bistable Behaviour and Thermo-Acoustic Instability Triggering in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3899
3906
.10.1016/j.proci.2016.08.007
39.
Hermeth
,
S.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
,
Anisimov
,
V.
,
Cirigliano
,
C.
, and
Poinsot
,
T.
,
2014
, “
Bistable Swirled Flames and Influence on Flame Transfer Functions
,”
Combust. Flame
,
161
(
1
), pp.
184
196
.10.1016/j.combustflame.2013.07.022
40.
Terhaar
,
S.
,
Krüger
,
O.
, and
Paschereit
,
C. O.
,
2015
, “
Flow Field and Flame Dynamics of Swirling Methane and Hydrogen Flames at Dry and Steam Diluted Conditions
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
041503
.10.1115/1.4028392
41.
Giuliani
,
F.
,
Lang
,
A.
,
Gradl
,
K. J.
,
Siebenhofer
,
P.
, and
Fritzer
,
J.
,
2012
, “
Air Flow Modulation for Refined Control of the Combustion Dynamics Using a Novel Actuator
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021602
.10.1115/1.4004147
42.
Renaud
,
A.
,
2015
, “
Étude de la Stabilisation des Flammes et des Comportements Transitoires Dans un Brûleur Étagé à Combustible Liquide à L'aide de Diagnostics Rapides
,” Ph.D. thesis, Paris Saclay, Saint-Aubin, France.
43.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.10.1017/S0022112010001217
44.
Schmid
,
P. J.
,
2011
, “
Application of the Dynamic Mode Decomposition to Experimental Data
,”
Exp. Fluids
,
50
(
4
), pp.
1123
1130
.10.1007/s00348-010-0911-3
45.
Rowley
,
C. W.
,
Mezić
,
I.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2009
, “
Spectral Analysis of Nonlinear Flows
,”
J. Fluid Mech.
,
641
, p.
115
.10.1017/S0022112009992059
46.
Providakis
,
T.
,
2013
, “
Compétition entre Structures Aérodynamiques et Modes Acoustiques dans une Flamme Swirlée: Influence de la Répartition de Carburant
,” Ph.D. thesis, Ecole Centrale Paris, Châtenay Malabry, France.
47.
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Tomographic Reconstruction of Heat Release Rate Perturbations Induced by Helical Modes in Turbulent Swirl Flames
,”
Exp. Fluids
,
54
(
4
), p.
1498
.10.1007/s00348-013-1498-2
48.
Cheneau
,
B.
,
Vié
,
A.
, and
Ducruix
,
S.
,
2015
, “
Large Eddy Simulations of a Liquid Fuel Swirl Burner: Flame Characterization for Pilot and Multipoint Injection Strategies
,”
ASME
Paper No. GT2015-42821.10.1115/GT2015-42821
49.
Grossmann
,
A.
,
Kronland-Martinet
,
R.
, and
Morlet
,
J.
,
1989
, “
Reading and Understanding Continuous Wavelet Transforms
,”
Wavelets
,
Springer
,
Berlin
, pp.
2
20
.
50.
Hardalupas
,
Y.
,
Selbach
,
A.
, and
Whitelaw
,
J. H.
,
2000
, “
Liquid-Fuelled Flames With Imposed Air Oscillations
,”
Laser Techniques Applied to Fluid Mechanics
,
Springer
,
Berlin
, pp.
403
416
.
You do not currently have access to this content.