Abstract

This paper demonstrates that a large Eddy simulation (LES) combustion model based on tabulated chemistry and Eulerian stochastic fields can successfully describe the flame dynamics of a premixed turbulent swirl flame. The combustion chemistry is tabulated from one-dimensional burner-stabilized flamelet computations in dependence on progress variable and enthalpy. The progress variable allows to efficiently include a detailed reaction scheme, while the dependence on enthalpy describes the effect of heat losses on the reaction rate. The turbulence-chemistry interaction is modeled by eight Eulerian stochastic fields. An LES of a premixed swirl burner with a broadband velocity excitation is performed to investigate the flame dynamics, i.e., the response of heat release rate to upstream velocity perturbations. In particular, the flame impulse response and the flame transfer function (FTF) are identified from LES time series data. Simulation results for a range of power ratings are in good agreement with the experimental data.

References

1.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2001
, “
Thermoacoustic Oscillations in an Annular Combustor
,”
ASME
Paper No. 2001-GT-0037
. 10.1115/2001-GT-0037
2.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.10.2514/1.24933
3.
Emmert
,
T.
,
Jaensch
,
S.
,
Sovardi
,
C.
, and
Polifke
,
W.
,
2014
, “
taX—A Flexible Tool for Low-Order Duct Acoustic Simulation in Time and Frequency Domain
,” Seventh Forum Acusticum, DEGA, Krakow, Poland.
4.
Li
,
J.
, and
Morgans
,
A. S.
,
2015
, “
Time Domain Simulations of Nonlinear Thermoacoustic Behaviour in a Simple Combustor Using a Wave-Based Approach
,”
J. Sound Vib.
,
346
, pp.
345
360
.10.1016/j.jsv.2015.01.032
5.
Emmert
,
T.
,
Meindl
,
M.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2016
, “
Linear State Space Interconnect Modeling of Acoustic Systems
,”
Acta Acust. United Acust.
,
102
(
5
), pp.
824
833
.10.3813/AAA.918997
6.
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
,
2000
, “
Theoretical and Experimental Determinations of the Transfer Function of a Premixed Laminar Flame
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
765
773
.10.1016/S0082-0784(00)80279-9
7.
Kunze
,
K.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2004
, “
Transfer Function Measurements on a Swirl Stabilized Premix Burner in an Annular Combustion Chamber
,”
ASME
Paper No. GT2004-53106
. 10.1115/GT2004-53106
8.
Hirsch
,
C.
,
Fanaca
,
D.
,
Reddy
,
P.
,
Polifke
,
W.
, and
Sattelmayer
,
T.
,
2005
, “
Influence of the Swirler Design on the Flame Transfer Function of Premixed Flames
,”
ASME
Paper No. GT2005-68195
. 10.1115/GT2005-68195
9.
Kim
,
K. T.
,
Lee
,
H. J.
,
Lee
,
J. G.
,
Quay
,
B. D.
, and
Santavicca
,
D.
,
2009
, “
Flame Transfer Function Measurement and Instability Frequency Prediction Using a Thermoacoustic Model
,”
ASME
Paper No. GT2009-60026
. 10.1115/GT2009-60026
10.
Bohn
,
D.
,
Deutsch
,
G.
, and
Krüger
,
U.
,
1998
, “
Numerical Prediction of the Dynamic Behaviour of Turbulent Diffusion Flames
,”
ASME J. Eng. Gas Turbines Power
,
120
(
4
), pp.
713
720
.10.1115/1.2818458
11.
Gentemann
,
A.
,
Hirsch
,
C.
,
Kunze
,
K.
,
Kiesewetter
,
F.
,
Sattelmayer
,
T.
, and
Polifke
,
W.
,
2004
, “
Validation of Flame Transfer Function Reconstruction for Perfectly Premixed Swirl Flames
,”
ASME
Paper No. GT2004-53776
. 10.1115/GT2004-53776
12.
Zhu
,
M.
,
Dowling
,
A. P.
, and
Bray
,
K. N. C.
,
2005
, “
Transfer Function Calculations for Aeroengine Combustion Oscillations
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
18
26
.10.1115/1.1806451
13.
Giauque
,
A.
,
Poinsot
,
T.
, and
Nicoud
,
F.
,
2008
, “
Validation of a Flame Transfer Function Reconstruction Method for Complex Turbulent Configurations
,”
AIAA
Paper No. 2008-2943.
10.2514/2008-2943
14.
Tay-Wo-Chong
,
L.
,
Bomberg
,
S.
,
Ulhaq
,
A.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2012
, “
Comparative Validation Study on Identification of Premixed Flame Transfer Function
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021502
.10.1115/1.4004183
15.
Peters
,
N.
,
1988
, “
Laminar Flamelet Concepts in Turbulent Combustion
,”
Proc. Combust. Inst
,
21
(
1
), pp.
1231
1250
.10.1016/S0082-0784(88)80355-2
16.
Bradley
,
D.
, and
Lau
,
A. K. C.
,
1990
, “
The Mathematical Modelling of Premixed Turbulent Combustion
,”
Pure Appl. Chem.
,
62
(
5
), pp.
803
814
.10.1351/pac199062050803
17.
Benim
,
A. C.
, and
Syed
,
K. J.
,
1998
, “
Laminar Flamelet Modelling of Turbulent Premixed Combustion
,”
Appl. Math. Modell.
,
22
(
1–2
), pp.
113
136
.10.1016/S0307-904X(98)00012-2
18.
De Goey
,
L. P. H.
, and
ten Thije Boonkkamp
,
J. H. M.
,
1999
, “
A Flamelet Description of Premixed Laminar Flames and the Relation With Flame Stretch
,”
Combust. Flame
,
119
(
3
), pp.
253
271
.10.1016/S0010-2180(99)00052-8
19.
Brandt
,
M.
,
Polifke
,
W.
,
Ivancic
,
B.
,
Flohr
,
P.
, and
Paikert
,
B.
,
2003
, “
Auto-Ignition in a Gas Turbine Burner at Elevated Temperature
,”
ASME
Paper No. 2003-GT-38224
. 10.1115/2003-GT-38224
20.
Domingo
,
P.
,
Vervisch
,
L.
, and
Veynante
,
D.
,
2006
, “
Auto-Ignition and Flame Propagation Effects in LES of Burned Gases Diluted Turbulent Combustion
,” Proceedings of the 2006 Summer Program,
Summer Program, Center for Turbulence Research
,
Stanford University/NASA Ames Research Center
, pp.
337
348
.
21.
Kulkarni
,
R.
, and
Polifke
,
W.
,
2013
, “
LES of Delft-Jet-in-Hot-Coflow (DJHC) With Tabulated Chemistry and Stochastic Fields Combustion Model
,”
Fuel Process. Technol.
,
107
, pp.
138
146
.10.1016/j.fuproc.2012.06.015
22.
Kulkarni
,
R.
,
Zellhuber
,
M.
, and
Polifke
,
W.
,
2013
, “
LES Based Investigation of Autoignition in Turbulent Co-Flow Configurations
,”
Combust. Theory Modell.
,
17
(
2
), pp.
224
259
.10.1080/13647830.2012.739711
23.
Kulkarni
,
R.
,
Bunkute
,
B.
,
Biagioli
,
F.
,
Düsing
,
M.
, and
Polifke
,
W.
,
2014
, “
Large Eddy Simulation of ALSTOM's Reheat Combustor Using Tabulated Chemistry and Stochastic Fields Combustion Model
,”
ASME
Paper No. GT2014-26053
. 10.1115/GT2014-26053
24.
Fiorina
,
B.
,
Baron
,
R.
,
Gicquel
,
O.
,
Thevenin
,
D.
,
Carpentier
,
S.
, and
Darabiha
,
N.
,
2003
, “
Modelling Non-Adiabatic Partially Premixed Flames Using Flame-Prolongation of ILDM
,”
Combust. Theory Modell.
,
7
(
3
), pp.
449
470
.10.1088/1364-7830/7/3/301
25.
Pierce
,
C.
, and
Moin
,
P.
,
2004
, “
Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion
,”
J. Fluid Mech.
,
504
, pp.
73
97
.10.1017/S0022112004008213
26.
Galpin
,
J.
,
Naudin
,
A.
,
Vervisch
,
L.
,
Angelberger
,
C.
,
Colin
,
O.
, and
Domingo
,
P.
,
2008
, “
Large-Eddy Simulation of a Fuel-Lean Premixed Turbulent Swirl-Burner
,”
Combust. Flame
,
155
(
1–2
), pp.
247
266
.10.1016/j.combustflame.2008.04.004
27.
Fiorina
,
B.
,
Mercier
,
R.
,
Kuenne
,
G.
,
Ketelheun
,
A.
,
Avdić
,
A.
,
Janicka
,
J.
,
Geyer
,
D.
,
Dreizler
,
A.
,
Alenius
,
E.
,
Duwig
,
C.
,
Trisjono
,
P.
,
Kleinheinz
,
K.
,
Kang
,
S.
,
Pitsch
,
H.
,
Proch
,
F.
,
Cavallo Marincola
,
F.
, and
Kempf
,
A.
,
2015
, “
Challenging Modeling Strategies for LES of Non-Adiabatic Turbulent Stratified Combustion
,”
Combust. Flame
,
162
(
11
), pp.
4264
4282
.10.1016/j.combustflame.2015.07.036
28.
Ihme
,
M.
, and
Pitsch
,
H.
,
2008
, “
Prediction of Extinction and Reignition in Nonpremixed Turbulent Flames Using a Flamelet/Progress Variable Model: 2. Application in LES of Sandia Flames D and E
,”
Combust. Flame
,
155
(
1–2
), pp.
90
107
.10.1016/j.combustflame.2008.04.015
29.
Kemenov
,
K. A.
, and
Pope
,
S. B.
,
2011
, “
Molecular Diffusion Effects in LES of a Piloted Methane–Air Flame
,”
Combust. Flame
,
158
(
2
), pp.
240
254
.10.1016/j.combustflame.2010.08.014
30.
Kemenov
,
K. A.
,
Wang
,
H.
, and
Pope
,
S. B.
,
2012
, “
Modelling Effects of Subgrid-Scale Mixture Fraction Variance in LES of a Piloted Diffusion Flame
,”
Combust. Theory Modell.
,
16
(
4
), pp.
611
638
.10.1080/13647830.2011.645881
31.
Saghafian
,
A.
,
Terrapon
,
V. E.
, and
Pitsch
,
H.
,
2015
, “
An Efficient Flamelet-Based Combustion Model for Compressible Flows
,”
Combust. Flame
,
162
(
3
), pp.
652
667
.10.1016/j.combustflame.2014.08.007
32.
Tay-Wo-Chong
,
L.
,
Scarpato
,
A.
, and
Polifke
,
W.
,
2017
, “
LES Combustion Model With Stretch and Heat Loss Effects for Prediction of Premix Flame Characteristics and Dynamics
,”
ASME
Paper No. GT2017-63357
.10.1115/GT2017-63357
33.
Zips
,
J.
,
Müller
,
H.
, and
Pfitzner
,
M.
,
2018
, “
Efficient Thermo-Chemistry Tabulation for Non-Premixed Combustion at High-Pressure Conditions
,”
Flow, Turbul. Combust.
,
101
(
3
), pp.
821
850
.10.1007/s10494-018-9932-4
34.
Valiño
,
L.
,
1998
, “
A Field Monte Carlo Formulation for Calculating the Probability Density Function of a Single Scalar in a Turbulent Flow
,”
Flow, Turbul. Combust.
,
60
(
2
), pp.
157
172
.10.1023/A:1009968902446
35.
Jones
,
W.
,
Navarro-Martinez
,
S.
, and
Röh
,
O.
,
2007
, “
Large Eddy Simulation of Hydrogen Auto-Ignition With a Probability Density Function Method
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
1765
1771
.10.1016/j.proci.2006.07.041
36.
Jones
,
W. P.
, and
Navarro-Martinez
,
S.
,
2007
, “
Large Eddy Simulation of Autoignition With a Subgrid Probability Density Function Method
,”
Combust. Flame
,
150
(
3
), pp.
170
187
.10.1016/j.combustflame.2007.04.003
37.
Jones
,
W. P.
, and
Prasad
,
V. N.
,
2010
, “
Large Eddy Simulation of the Sandia Flame Series (D–F) Using the Eulerian Stochastic Field Method
,”
Combust. Flame
,
157
(
9
), pp.
1621
1636
.10.1016/j.combustflame.2010.05.010
38.
Mustata
,
R.
,
Valiño
,
L.
,
Jiménez
,
C.
,
Jones
,
W. P.
, and
Bondi
,
S.
,
2006
, “
A Probability Density Function Eulerian Monte Carlo Field Method for Large Eddy Simulations: Application to a Turbulent Piloted Methane/Air Diffusion Flame (Sandia D)
,”
Combust. Flame
,
145
(
1–2
), pp.
88
104
.10.1016/j.combustflame.2005.12.002
39.
Avdić
,
A.
,
Kuenne
,
G.
, and
Janicka
,
J.
,
2016
, “
Flow Physics of a Bluff-Body Swirl Stabilized Flame and Their Prediction by Means of a Joint Eulerian Stochastic Field and Tabulated Chemistry Approach
,”
Flow, Turbul. Combust.
,
97
(
4
), pp.
1185
1210
.10.1007/s10494-016-9781-y
40.
Avdić
,
A.
,
Kuenne
,
G.
,
di Mare
,
F.
, and
Janicka
,
J.
,
2017
, “
LES Combustion Modeling Using the Eulerian Stochastic Field Method Coupled With Tabulated Chemistry
,”
Combust. Flame
,
175
, pp.
201
219
.10.1016/j.combustflame.2016.06.015
41.
Yang
,
Y.
,
Noiray
,
N.
,
Scarpato
,
A.
,
Schulz
,
O.
,
Düsing
,
K. M.
, and
Bothien
,
M.
,
2015
, “
Numerical Analysis of the Dynamic Flame Response in Alstom Reheat Combustion Systems
,”
ASME
Paper No. GT2015-42622
.
42.
Bothien
,
M.
,
Lauper
,
D.
,
Yang
,
Y.
, and
Scarpato
,
A.
,
2018
, “
Reconstruction and Analysis of the Acoustic Transfer Matrix of a Reheat Flame From Large-Eddy Simulations
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021018
.10.1115/1.4041151
43.
Tay-Wo-Chong
,
L.
,
Zellhuber
,
M.
,
Komarek
,
T.
,
Im
,
H. G.
, and
Polifke
,
W.
,
2016
, “
Combined Influence of Strain and Heat Loss on Premixed Flame Stabilization
,”
Flow, Turbul. Combust.
,
97
(
1
), pp.
263
294
.10.1007/s10494-015-9679-0
44.
Chatelier
,
A.
,
Guiberti
,
T.
,
Mercier
,
R.
,
Bertier
,
N.
,
Fiorina
,
B.
, and
Schuller
,
T.
,
2019
, “
Experimental and Numerical Investigation of the Response of a Swirled Flame to Flow Modulations in a Non-Adiabatic Combustor
,”
Flow, Turbul. Combust.
,
102
(
4
), pp.
995
1023
.10.1007/s10494-018-9995-2
45.
Kim
,
W.-W.
,
Menon
,
S.
,
Kim
,
W.-W.
, and
Menon
,
S.
,
1997
, “
Application of the Localized Dynamic Subgrid-Scale Model to Turbulent Wall-Bounded Flows
,”
35th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings
, Reno, NV.
46.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2016
, “Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes,” accessed Jan. 17, 2018, http://www.cantera.org Version 2.2.1
47.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2016
, “GRI-Mech 3.0,” accessed Feb. 4, 2017, http://www.me.berkeley.edu/gri_mech
48.
Pera
,
C.
,
Colin
,
O.
, and
Jay
,
S.
,
2009
, “
Development of a FPI Detailed Chemistry Tabulation Methodology for Internal Combustion Engines
,”
Oil Gas Sci. Technol. - Revue de l'IFP
,
64
(
3
), pp.
243
258
.10.2516/ogst/2009002
49.
Michel
,
J.-B.
,
Colin
,
O.
, and
Angelberger
,
C.
,
2010
, “
On the Formulation of Species Reaction Rates in the Context of Multi-Species CFD Codes Using Complex Chemistry Tabulation Techniques
,”
Combust. Flame
,
157
(
4
), pp.
701
714
.10.1016/j.combustflame.2009.12.014
50.
Valiño
,
L.
,
Mustata
,
R.
, and
Letaief
,
K. B.
,
2016
, “
Consistent Behavior of Eulerian Monte Carlo Fields at Low Reynolds Numbers
,”
Flow, Turbul. Combust.
,
96
(
2
), pp.
503
512
.10.1007/s10494-015-9687-0
51.
Crocco
,
L.
,
1951
, “
Aspects of Combustion Stability in Liquid Propellant Rocket Motors—Part1: Fundamentals. Low Frequency Instability With Monopropellants
,”
J. Am. Rocket Soc.
,
21
(
6
), pp.
163
178
.10.2514/8.4393
52.
Crocco
,
L.
,
1952
, “
Aspects of Combustion Stability in Liquid Propellant Rocket Motors—Part 2: Low Frequency Instability With Bipropellants. High Frequency Instability
,”
J. Am. Rocket Soc.
,
22
(
1
), pp.
7
16
.10.2514/8.4410
53.
Subramanian
,
P.
,
Blumenthal
,
R. S.
,
Sujith
,
R.
, and
Polifke
,
W.
,
2015
, “
Distributed Time Lag Response Functions for the Modelling of Combustion Dynamics
,”
Combust. Theory Modell.
,
19
(
2
), pp.
223
237
.10.1080/13647830.2014.1001438
54.
Polifke
,
W.
,
2014
, “
Black-Box System Identification for Reduced Order Model Construction
,”
Ann. Nucl. Energy
,
67C
, pp.
109
128
.
55.
Emmert
,
T.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2015
, “
Intrinsic Thermoacoustic Instability of Premixed Flames
,”
Combust. Flame
,
162
(
1
), pp.
75
85
.10.1016/j.combustflame.2014.06.008
56.
Dowling
,
A. P.
,
1997
, “
Nonlinear Self-Excited Oscillations of a Ducted Flame
,”
J. Fluid Mech.
,
346
, pp.
271
290
.10.1017/S0022112097006484
57.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2008
, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
,
615
, pp.
139
167
.10.1017/S0022112008003613
58.
Gopinathan
,
S. M.
,
Iurashev
,
D.
,
Bigongiari
,
A.
, and
Heckl
,
M.
,
2018
, “
Nonlinear Analytical Flame Models With Amplitude-Dependent Time-Lag Distributions
,”
Int. J. Spray Combust. Dyn.
,
10
(
4
), pp.
264
276
.10.1177/1756827717728056
59.
Keesman
,
K. J.
,
2011
, “
Time-Invariant System Identification
,”
System Identification, Advanced Textbooks in Control and Signal Processing
,
Springer
,
London
, pp.
59
167
.
60.
Föller
,
S.
, and
Polifke
,
W.
,
2011
, “
Advances in Identification Techniques for Aero-Acoustic Scattering Coefficients From Large Eddy Simulation
,”
18th International Congress on Sound and Vibration (ICSV18)
, Rio de Janeiro, Brazil, pp.
3122
3129
.
61.
Komarek
,
T.
, and
Polifke
,
W.
,
2010
, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061503
.10.1115/1.4000127
62.
Zimont
,
V. L.
, and
Lipatnikov
,
A. N.
,
1995
, “
A Numerical Model of Premixed Turbulent Combustion of Gases
,”
Chem. Phys. Rep.
,
14
(
7
), pp.
993
1025
.
63.
Guo
,
S.
,
Silva
,
C. F.
,
Ghani
,
A.
, and
Polifke
,
W.
,
2019
, “
Quantification and Propagation of Uncertainties in Identification of Flame Impulse Response for Thermoacoustic Stability Analysis
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021032
.10.1115/1.4041652
You do not currently have access to this content.