Considered is double wall cooling, with full-coverage effusion-cooling on the hot side of the effusion plate, and a combination of impingement cooling and cross flow cooling, employed together on the cold side of the effusion plate. Data are given for a main stream flow passage with a contraction ratio (CR) of 4 for main stream Reynolds numbers Rems and Rems,avg of 157,000–161,000 and 233,000–244,000, respectively. Hot-side measurements (on the main stream flow or hot side of the effusion plate) are presented, which are measured using infrared thermography. Using a transient thermal measurement approach, measured are spatially resolved distributions of surface adiabatic film cooling effectiveness, and surface heat transfer coefficient. For the same Reynolds number, initial blowing ratio (BR), and streamwise location, increased thermal protection is often provided when the effusion coolant is provided by the cross flow/impingement combination configuration, compared to the cross flow only supply arrangement. In general, higher adiabatic effectiveness values are provided by the impingement only arrangement, relative to the impingement/cross flow combination configuration, when compared at the same Reynolds number, initial BR, and x/de location. Data for one streamwise location of x/de = 60 show that the highest net heat flux reduction line-averaged net heat flux reduction (NHFR) values are produced either by the impingement/cross flow combination configuration or by the impingement only arrangement, depending upon the particular magnitude of BR, which is considered.

References

1.
Rogers
,
N.
,
Ren
,
Z.
,
Buzzard
,
W.
,
Sweeney
,
B.
,
Tinker
,
N.
,
Ligrani
,
P. M.
,
Hollingsworth
,
K. D.
,
Liberatore
,
F.
,
Patel
,
R.
,
Ho
,
S.
, and
Moon
,
H.-K.
,
2016
, “
Effects of Double Wall Cooling Configuration and Conditions on Performance of Full Coverage Effusion Cooling
,”
ASME
Paper No. GT2016-56515.
2.
Schulz
,
A.
,
2001
, “
Combustor Liner Cooling Technology in Scope of Reduced Pollutant Formation and Rising Thermal Efficiencies
,”
Heat Transfer in Gas Turbine Systems
,
R. J.
Goldstein
, ed., Vol.
934
,
Annals of the New York Academy of Sciences
,
New York
, pp.
135
146
.
3.
Krewinkel
,
R.
,
2013
, “
A Review of Gas Turbine Effusion Cooling Studies
,”
Int. J. Heat Mass Transfer
,
66
, pp.
706
722
.
4.
Sasaki
,
M.
,
Takahara
,
K.
,
Kumagai
,
T.
, and
Hamano
,
M.
,
1979
, “
Film Cooling Effectiveness for Injection From Multirow Holes
,”
ASME J. Eng. Power
,
101
(
1
), pp.
101
108
.
5.
Martiny
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1995
, “
Full-Coverage Film Cooling Investigation: Adiabatic Wall Temperatures and Flow Visualization
,”
ASME
Paper No. 95-WA.
6.
Bailey
,
J. C.
,
Intile
,
J.
,
Tolpadi
,
A.
,
Fric
,
T.
,
Nirmalan
,
N. V.
, and
Bunker
,
R. S.
,
2003
, “
Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
125
(
4
), pp.
994
1002
.
7.
Lin
,
Y.
,
Song
,
B.
,
Li
,
B.
,
Liu
,
G.
, and
Wu
,
Z.
,
2003
, “
Investigation of Film Cooling Effectiveness of Full-Coverage Inclined Multihole Walls With Different Hole Arrangements
,”
ASME
Paper No. GT-2003-38881.
8.
Kelly
,
G. B.
, and
Bogard
,
D. G.
,
2003
, “
An Investigation of the Heat Transfer for Full Coverage Film Cooling
,”
ASME
Paper No. GT2003-38716.
9.
Jackowski
,
T.
,
Schulz
,
A.
,
Bauer
,
H.-J.
,
Gerendas
,
M.
, and
Behrendt
,
T.
,
2016
, “
Effusion Cooled Combustor Liner Tiles With Modern Cooling Concepts: A Comparative Experimental Study
,”
ASME
Paper No. GT2016-56598.
10.
Ji
,
Y.
,
Ge
,
B.
,
Zang
,
S.
,
Yu
,
J.
, and
Zhang
,
J.
,
2016
, “
Experimental Investigation of Effusion Cooling Performance on the Liner of a Scaled Three Injector Annular Combustor
,”
ASME
Paper No. GT2016-57035.
11.
Sung
,
Y.
,
Dord
,
A.
,
Laskowski
,
G. M.
,
Shunn
,
L.
,
Natsui
,
G.
, and
Kapat
,
J.
,
2016
, “
Detailed Large Eddy Simulations (LES) of Multi-Hole Effusion Cooling Flow for Gas Turbines
,”
ASME
Paper No. GT2016-57957.
12.
Wang
,
G.
,
Ledezma
,
G. A.
,
DeLancey
,
J.
, and
Wang
,
A.
,
2016
, “
Experimental and Numerical Investigations of Effusion Cooling for High Pressure Turbine Components—Part 1: Experimental Study With PSP
,”
ASME
Paper No. GT2016-56398.
13.
Ledezma
,
G. A.
,
Lachance
,
J.
,
Wang
,
G.
,
Wang
,
A.
, and
Laskowski
,
G. M.
,
2016
, “
Experimental and Numerical Investigations of Effusion Cooling for High Pressure Turbine Components—Part 2: Numerical Results
,”
ASME
Paper No. GT2016-56400.
14.
Ji
,
Y.
,
Ge
,
B.
,
Zang
,
S.
,
Xin
,
J.
,
Ye
,
C.
, and
Song
,
H.
,
2017
, “
Effect of Holes Array on Effusion Cooling Characteristics of a Three-Nozzle Model Combustor Liner
,”
ASME
Paper No. GT2017-64247.
15.
Vinton
,
K. R.
, and
Wright
,
L. M.
,
2017
, “
Effect of Flow Acceleration on Mainstream-to-Coolant Flow Interaction for Round and Shaped Film Cooling Holes
,”
ASME
Paper No. GT2017-63818.
16.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2017
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part I: Axial Shaped Holes
,”
ASME
Paper No. GT2017-64616.
17.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2017
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part II: Compound Angle Shaped Holes
,”
ASME
Paper No. GT2017-64624.
18.
Andrews
,
G. E.
,
Asere
,
A. A.
,
Husain
,
C. I.
,
Mkpadi
,
M. C.
, and
Nazari
,
A.
, “
Impingement/Effusion Cooling: Overall Wall Heat Transfer
,”
ASME
Paper No. 88-GT-290.
19.
Al Dabagh
,
A. M.
,
Andrews
,
G. E.
,
Abdul Husain
,
R. A. A.
,
Husain
,
C. I.
,
Nazari
,
A.
, and
Wu
,
J.
,
1990
, “
Impingement/Effusion Cooling: The Influence of the Number of Impingement Holes and Pressure Loss on the Heat Transfer Coefficient
,”
ASME J. Turbomach.
,
112
(
3
), pp.
467
476
.
20.
Andrews
,
G. E.
,
Al-Dabagh
,
A. M.
,
Asere
,
A. A.
,
Bazdidi-Tehrani
,
F.
,
Mkpadi
,
M. C.
, and
Nazari
,
A.
,
1992
, “
Impingement/Effusion Cooling
,”
AGARD Conference Proceedings, 80th Symposium on Heat Transfer and Cooling in Gas Turbines, AGARD Propulsion and Energetics Panel
, Vol.
527
, Antalya, Turkey, Oct. 12–16, pp.
30.1
30.10
.
21.
Andrews
,
G. E.
, and
Nazari
,
A.
,
1999
, “
Impingement/Effusion Cooling: Influence of Number of Holes on the Cooling Effectiveness for an Impingement X/D of 10.5 and Effusion X/D of 7.0
,”
GTSJ International Gas Turbine Congress
, Vol.
II
, Kobe, Japan, Paper No. IGTC TS-51.
22.
Cho
,
H. H.
, and
Rhee
,
D. H.
,
2001
, “
Local Heat/Mass Transfer Measurement on the Effusion Plate in Impingement/Effusion Cooling Systems
,”
ASME J. Turbomach.
,
123
(
3
), pp.
601
608
.
23.
Hong
,
S. K.
,
Rhee
,
D. H.
, and
Cho
,
H. H.
,
2007
, “
Effects of Fin Shapes and Arrangements on Heat Transfer for Impingement/Effusion Cooling With Cross-Flow
,”
ASME J. Heat Transfer
,
129
(
12
), pp.
1697
1707
.
24.
Cho
,
H. H.
,
Rhee
,
D. H.
, and
Goldstein
,
R. J.
,
2008
, “
Effects of Hole Arrangements on Local Heat/Mass Transfer for Impingement/Effusion Cooling With Small Hole Spacing
,”
ASME J. Turbomach.
,
130
(
1
), p.
041003
.
25.
Miller
,
M.
,
Natsui
,
G.
,
Ricklick
,
M.
,
Kapat
,
J.
, and
Schilp
,
R.
,
2014
, “
Heat Transfer in a Coupled Impingement-Effusion Cooling System
,”
ASME
Paper No. GT2014-26416.
26.
Shi
,
B.
,
Li
,
J.
,
Li
,
M.
,
Ren
,
J.
, and
Jiang
,
H.
,
2016
, “
Cooling Effectiveness on a Flat Plate With Both Film Cooling and Impingement Cooling in Hot Gas Conditions
,”
ASME
Paper No. GT2016-57224.
27.
El-Jummah
,
A. M.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2016
, “
Impingement/Effusion Cooling Wall Heat Transfer Conjugate Heat Transfer Computational Fluid Dynamic Predictions
,”
ASME
Paper No. GT2016-56961.
28.
El-Jummah
,
A. M.
,
Nazari
,
A.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2017
, “
Impingement/Effusion Cooling Wall Heat Transfer: Reduced Number of Impingement Jet Holes Relative to the Effusion Holes
,”
ASME
Paper No. GT2017-63494.
29.
Oguntade
,
H. I.
,
Andrews
,
G. E.
,
Burns
,
A. D.
,
Ingham
,
D. B.
, and
Pourkashanian
,
M.
,
2017
, “
Impingement/Effusion Cooling With Low Coolant Mass Flow
,”
ASME
Paper No. GT2017-63484.
30.
Allgaier
,
C.
,
Ren
,
Z.
,
Vanga
,
S. R.
,
Ligrani
,
P. M.
,
Liberatore
,
F.
,
Patel
,
R.
,
Srinivasan
,
R.
, and
Ho
,
Y.-H.
,
2018
, “
Double Wall Cooling of a Full Coverage Effusion Plate With Cross Flow Supply Cooling and Main Flow Pressure Gradient
,”
ASME
Paper No. GT2018-77061.
31.
Vanga
,
S. R.
,
Ren
,
Z.
,
Click
,
A. J.
,
Ligrani
,
P. M.
,
Liberatore
,
F.
,
Patel
,
R.
,
Srinivasan
,
R.
, and
Ho
,
Y.-H.
,
2018
, “
Double Wall Cooling of a Full Coverage Effusion Plate With Main Flow Pressure Gradient, Including Internal Impingement Array Cooling
,”
ASME
Paper No. GT2018-77036.
32.
Ren
,
Z.
,
Vanga
,
S. R.
,
Rogers
,
N.
,
Ligrani
,
P. M.
,
Hollingsworth
,
K. D.
,
Liberatore
,
F.
,
Patel
,
R.
,
Srinivasan
,
R.
, and
Ho
,
Y.
,
2017
, “
Internal and External Cooling of a Full Coverage Effusion Cooling Plate: Effects of Double Wall Cooling Configuration and Conditions
,”
ASME
Paper No. GT2017-64921.
33.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
34.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.