Abstract

The mainstream, or primary, flow in a gas turbine annulus is characteristically two-dimensional over the midspan region of the blading, where the radial flow is almost negligible. Contrastingly, the flow in the endwall and tip regions of the blading is highly three-dimensional (3D), characterized by boundary layer effects, secondary flow features, and interaction with cooling flows. Engine designers employ geometric contouring of the endwall region in order to reduce secondary flow effects and subsequently minimize their contribution to aerodynamic loss. Such is the geometric variation of vane and blade profiles—which has become a proprietary art form—the specification of an effective endwall geometry is equally unique to each blade row. Endwall design methods, which are often directly coupled to aerodynamic optimizers, are widely developed to assist with the generation of contoured surfaces. Most of these construction methods are limited to the blade row under investigation, while few demonstrate the controllability required to offer a universal platform for endwall design. This paper presents a geometry generation framework (GGF) for the generation of contoured endwalls. The framework employs an adaptable meshing strategy, capable of being applied to any vane or blade, and a versatile function-based approach to defining the endwall shape. The flexibility of this novel approach is demonstrated by recreating a selection of endwalls from the literature, which were selected for their wide range of contouring approaches.

References

1.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
,
1990
, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomach.
,
112
(
3
), pp.
488
496
.10.1115/1.2927684
2.
Haase
,
K.
,
Winkler
,
S.
,
Weigand
,
B.
, and
Neumann
,
S. O.
,
2012
, “
Novel Turbine Endwall Contours for the Reduction of Heat Transfer Generated Using Ice Formation Method
,”
ASME
Paper No. IMECE2012-87430.10.1115/IMECE2012-87430
3.
Schobeiri
,
M. T.
, and
Lu
,
K.
,
2011
, “
Endwall Contouring Using Continuous Diffusion, a Breakthrough Method and Its Application to a Three-Stage High Pressure Turbine
,”
ASME
Paper No. GT2011-45931. 10.1115/GT2011-45931
4.
Rose
,
M. G.
,
1994
, “
Non-Axisymmetric Endwall Profiling in the HP NGV's of an Axial Flow Gas Turbine
,”
ASME
Paper No. 94-GT-249. 10.1115/94-GT-249
5.
Nagel
,
M. G.
, and
Baier
,
R.
,
2005
, “
Experimentally Verified Numerical Optimization of a Three-Dimensional Parameterized Turbine Vane With Non-Axisymmetric End Walls
,”
ASME J. Turbomach.
,
127
(
2
), pp.
380
387
.10.1115/1.1773848
6.
Saha
,
A. K.
, and
Acharya
,
S.
,
2006
, “
Computations of Turbulent Flow and Heat Transfer Through a Three-Dimensional Non-Axisymmetric Blade Passage
,”
ASME
Paper No. GT2006-90390. 10.1115/GT2006-90390
7.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J. C.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Non-Axisymmetric Turbine End Wall Design: Part 1—Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
(
2
), pp.
278
285
.10.1115/1.555445
8.
Shahpar
,
S.
, and
Lapworth
,
B. L.
,
1998
, “
A Forward and Inverse Three-Dimensional Linear Design System for Turbomachinery Applications
,”
4th ECCOMASS Computational Fluid Dynamics Conference
, Athens, Sept.
7
11
.
9.
Shahpar
,
S.
,
Lapworth
,
B. L.
,
De Pablos
,
T.
, and
Taylor
,
M. D.
,
1999
, “
A Linear Approach to the Multi-Parameter Design of Three-Dimensional Turbomachinery Blades
,”
AIAA
Paper No. 99-0363. 10.2514/6.1999-0363
10.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
,
2013
, “
Application of Nonaxisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,”
ASME J. Turbomach.
,
135
(
6
), p.
061006
.10.1115/1.4024023
11.
Panchal
,
K.
,
Abraham
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Brown
,
B. J.
, and
Malandra
,
A.
,
2011
, “
Investigation of Effect of End Wall Contouring Methods on a Transonic Turbine Blade Passage
,”
ASME
Paper No. GT2011-45192. 10.1115/GT2011-45192
12.
Kim
,
I.
,
Kim
,
J.
,
Cho
,
J.
, and
Kang
,
Y.
,
2016
, “
Non-Axisymmetric Endwall Profile Optimization of a High-Pressure Transonic Turbine Using Approximation Model
,”
ASME
Paper No. GT2016-57970. 10.1115/GT2016-57970
13.
Tang
,
H.
,
Liu
,
S.
, and
Luo
,
H.
,
2016
, “
Design Optimization of Profiled Endwall With Consideration of Cooling and Rim Seal Flow Effects
,”
ASME
Paper No. GT2016-57219. 10.1115/GT2016-57219
14.
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2016
, “
Comparison of the Three-Dimensional Boundary Layer on Flat Versus Contoured Turbine Endwalls
,”
ASME J. Turbomach.
,
138
(
4
), p.
041008
.10.1115/1.4032165
15.
Hartland
,
J. C.
,
Gregory-Smith
,
D. G.
, and
Rose
,
M. G.
,
1998
, “
Non-Axisymmetric Endwall Profiling in a Turbine Rotor Blade
,”
ASME
Paper No. 98-GT-525. 10.1115/98-GT-525
16.
Hartland
,
J. C.
,
Gregory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
,
2000
, “
Non-Axisymmetric Turbine End Wall Design: Part 2—Experimental Validation
,”
ASME J. Turbomach.
,
122
(
2
), pp.
286
293
.10.1115/1.555446
17.
Hartland
,
J. C.
, and
Gregory-Smith
,
D. G.
,
2002
, “
A Design Method for the Profiling of End Walls in Turbines
,”
ASME
Paper No. GT-2002-30433. 10.1115/GT-2002-30433
18.
Brennan
,
G.
,
Harvey
,
N. W.
,
Rose
,
M. G.
,
Fomison
,
N.
, and
Taylor
,
M. D.
,
2003
, “
Improving the Efficiency of the Trent 500-HP Turbine Using Nonaxisymmetric End Walls—Part 1: Turbine Design
,”
ASME J. Turbomach.
,
125
(
3
), pp.
497
504
.10.1115/1.1450766
19.
Rose
,
M. G.
,
Harvey
,
N. W.
,
Seaman
,
P.
,
Newman
,
D. A.
, and
McManus
,
D.
,
2001
, “
Improving the Efficiency of the Trent 500-HP Turbine Using Non-Axisymmetric End Walls—Part 2: Experimental Validation
,”
ASME
Paper No. 2001-GT-0505. 10.1115/2001-GT-0505
20.
Harvey
,
N. W.
,
Brennan
,
G.
,
Newman
,
D. A.
, and
Rose
,
M. G.
,
2002
, “
Improving Turbine Efficiency Using Non-Axisymmetric End Walls: Validation in the Multi-Row Environment and With Low Aspect Ratio Blading
,”
ASME
Paper No. GT-2002-30337. 10.1115/GT-2002-30337
21.
Reising
,
S.
, and
Schiffer
,
H. P.
,
2009
, “
Non-Axisymmetric End Wall Profiling in Transonic Compressors—Part I: Improving the Static Pressure Recovery at Off-Design Conditions by Sequential Hub and Shroud End Wall Profiling
,”
ASME
Paper No. GT2009-59133. 10.1115/GT2009-59133
22.
Germain
,
T.
,
Nagel
,
M.
,
Raab
,
I.
,
Schupbach
,
P.
,
Abhari
,
R. S.
, and
Rose
,
M. G.
,
2010
, “
Improving Efficiency of a High Work Turbine Using Nonaxisymmetric Endwalls—Part I: Endwall Design and Performance
,”
ASME J. Turbomach.
,
132
(
2
), p.
021007
.10.1115/1.3106706
23.
Nagel
,
M.
,
Fottner
,
L.
, and
Baier
,
R.-D.
,
2001
, “
Optimization of Three Dimensionally Designed Turbines Blades and Side Walls
,” ISABE Paper No.
2001
1058
.
24.
Torre
,
D.
,
Vazquez
,
R.
,
de la Rosa Blanco
,
E.
, and
Hodson
,
H. P.
,
2011
, “
A New Alternative for Reduction in Secondary Flows in Low Pressure Turbines
,”
ASME J. Turbomach.
,
133
(
1
), p.
011029
.10.1115/1.4001365
25.
Regina
,
K.
,
Kalfas
,
A. I.
,
Abhari
,
R. S.
,
Lohaus
,
A. S.
,
Voelker
,
S.
, and
Kampe
,
T. A. D.
,
2014
,“
Aerodynamic Robustness of End Wall Contouring Against Rim Seal Purge Flow
,”
ASME
Paper No. GT2014-26007. 10.1115/GT2014-26007
26.
Chilla
,
M.
,
Hodson
,
H. P.
,
Pullan
,
G.
, and
Newman
,
D.
,
2016
, “
High Pressure Turbine Rim Seal Design for Increased Efficiency
,”
ASME
Paper No. GT2016-57495. 10.1115/GT2016-57495
You do not currently have access to this content.