Abstract

In this paper, a novel bulk-flow model for pocket damper seals (PDS) is introduced. The model is based on two control volumes (CVs) for each circumferential pocket of the seal. The continuity, circumferential momentum, and energy equations are considered for each control volume. The circumferential recirculating flow within the pocket is modeled for the first time. The boundary layer theory is used to estimate the recirculating flow area, and the Swamee–Jain friction factor correlation allows for defining the dissipation of the circumferential velocity. The perturbation method is used to solve the partial derivative governing equations in the zeroth- and first-order system of equations. The rotordynamic coefficients are evaluated by integrating the dynamic pressure and rotor shear stresses along the circumferential direction. The predictions are compared to the experimental data, which refer to test conditions representative of high-pressure centrifugal compressors. Numerical predictions are accurate for both high positive–negative inlet preswirl ratios. Leakage predictions are also aligned with measurements. Finally, sealing selection approach is introduced in the paper for comparing the dynamic behavior of two different sealing technologies and identifying stable regions as a function of the rotor natural frequency and preswirl ratio.

References

1.
Vannini
,
G.
,
Bertoneri
,
M.
,
Nielsen
,
K.
,
Iudiciani
,
P.
, and
Stronach
,
R.
,
2015
, “
Experimental Results and Computational Fluid Dynamics Simulations of Labyrinth and Pocket Damper Seals for Wet Gas Compression
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
052501
.10.1115/1.4031530
2.
Vannini
,
G.
,
Cioncolini
,
S.
,
Del Vescovo
,
G.
, and
Rovini
,
M.
,
2014
, “
Labyrinth Seal and Pocket Damper Seal High Pressure Rotordynamic Test Data
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
022501
.10.1115/1.4025360
3.
Ertas
,
B.
,
Delgado
,
A.
, and
Vannini
,
G.
,
2012
, “
Rotordynamic Force Coefficients for Three Types of Annular Gas Seals With Inlet Preswirl and High Differential Pressure Ratio
,”
ASME J. Eng. Gas Turbines Power
, p.
042503
.10.1115/1.4004537
4.
Vance
,
M.
, and
Sundararajan
,
P.
,
1993
, “
Design And Applications Analysis of A New Damper Seal
,”
Turbomachinery Laboratory Research Progress Report
,
Texas A&M University
,
College Station, TX
, Report No. TRC-Seal-4-93.
5.
Li
,
J.
,
1995
, “
The Effect of a New Damper Seal on Rotordynamics
,”
Master's thesis
,
Texas A&M University
,
College Station, TX
.
6.
Li
,
J.
,
San Andrés
,
L.
, and
Vance
,
J.
,
1999
, “
A Bulk-Flow Analysis of Multiple-Pocket Gas Damper Seals
,”
ASME J. Gas Turbines Power
,
121
(
2
), pp.
355
362
.10.1115/1.2817128
7.
Li
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2015
, “
Numerical Investigations on the Leakage and Rotordynamic Characteristics of Pocket Damper Seals—Part I: Effects of Pressure Ratio, Rotational Speed, and Inlet Preswirl
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032503
.10.1115/1.4028373
8.
Li
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2014
, “
Numerical Investigations on the Leakage and Rotordynamic Characteristics of Pocket Damper Seals—Part II: Effects of Partition Wall Type, Partition Wall Number, and Cavity Depth
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032504
.10.1115/1.4028374
9.
Li
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2015
, “
Numerical Comparison of Rotordynamic Characteristics for a Fully-Partitioned Pocket Damper Seal and a Labyrinth Seal With High Positive and Negative Inlet Preswirl
,”
ASME J. Eng. Gas Turbines Power
, 138(4), p.
042505
.10.1115/1.4031545
10.
Childs
,
D. W.
, and
Scharrer
,
J. K.
,
1986
, “
An Iwatsubo-Based Solution for Labyrinth Seals: Comparison to Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
325
331
.10.1115/1.3239907
11.
Scharrer
,
J. K.
,
1988
, “
Theory Versus Experiment for the Rotordynamic Coefficients of Labyrinth Gas Seals—Part I: A Two Control Volume Model
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
110
(
3
), pp.
270
280
.10.1115/1.3269513
12.
Cangioli
,
F.
,
Pennacchi
,
P.
,
Vannini
,
G.
, and
Ciuchicchi
,
L.
,
2018
, “
Effect of Energy Equation in One Control-Volume Bulk‐Flow Model for the Prediction of Labyrinth Seal Dynamic Coefficients
,”
Mech. Syst. Signal Process.
,
98
, pp.
594
612
.10.1016/j.ymssp.2017.05.017
13.
Schlichting
,
H.
,
1979
,
Boundary-Layer Theory
,
McGraw-Hill
,
New York
.
14.
Cangioli
,
F.
,
Pennacchi
,
P.
,
Riboni
,
G.
,
Vannini
,
G.
,
Ciuchicchi
,
L.
,
Vania
,
A.
, and
Chatterton
,
S.
,
2017
, “
Sensitivity Analysis of the One-Control Volume Bulk-Flow Model for a 14 Teeth-on-Stator Straight-Through Labyrinth Seal
,”
ASME Paper No. GT2017-63014.
10.1115/GT2017-63014
15.
Gurevich
,
M.
,
1966
,
The Theory of Jets in an Ideal Fluid
,
Pergamon Press
,
Oxford
, UK,
319
323
.
16.
Neumann
,
K.
,
1964
, “
Zur Frage Der Verwendung Von Durchblicktungen im Dampgturbinebau
,”
Maschinentechnik
,
13
(
4
).
17.
Bell
,
I. H.
,
Quoilin
,
S.
,
Wronski
,
J.
, and
Lemort
,
V.
,
2013
, “
Coolprop: An Open-Source Reference-Quality Thermophysical Property Library
,” ASME ORC 2nd International Seminar on ORC Power Systems.
18.
Cangioli
,
F.
,
Pennacchi
,
P.
,
Vannini
,
G.
,
Ciuchicchi
,
L.
,
Vania
,
A.
,
Chatterton
,
S.
, and
Dang
,
P. V.
,
2018
, “
On the Thermodynamic Process in the Bulk-Flow Model for the Estimation of the Dynamic Coefficients of Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032502
.10.1115/1.4037919
19.
Vannini
,
G.
,
Cioncolini
,
S.
,
Calicchio
,
V.
, and
Tedone
,
F.
,
2011
, “
Development of a High Pressure Rotordynamic Test Rig for Centrifugal Compressors Internal Seals Characterization
,”
40th Turbomachinery Symposium
,
Texas A&M University—Turbomachinery Laboratories
,
Houston, TX
, Sept. 12–15, pp.
46
59
.
You do not currently have access to this content.