Abstract

Today's and future parameters of stationary gas turbines and aircraft engines require intensive and highly efficient cooling of hot gas path components. High temperature and thermally induced stress gradients with impact on fatigue life are the consequence. Thermally induced stress gradients differ from geometrically induced stress gradients with respect to stress mechanics by the independence from external loads and material mechanics by the influence of temperature on material properties and strength. Regarding the contribution and evaluation on damage, the latter characteristic feature in turbomachinery is currently not fully understood. Therefore, a test facility has been designed, setup, and reported in GTP-18-1482 for the investigation of the influence of stationary temperature, and thus thermally induced stress gradients, on the damage evolution of cooled high-temperature components. To achieve high temperature and thermally induced stress gradients, large heat fluxes are required. A unique radiation heating has been developed allowing very high heat fluxes of q˙ ≥ 1.5 MW/m2 for testing of hollow cylindrical specimens. The conventional cast nickel-base alloy Mar-M247 has been chosen to study the influence of thermally induced stress gradients on fatigue life. The low-cycle fatigue testing of the hollow cylindrical specimens has been conducted both with and without superimposed stationary temperature gradients. In addition, complex low-cycle fatigue (CLCF) tests with symmetric and nonsymmetric loading conditions have been performed to provide the necessary database for the adaptation of a viscoplastic deformation model. To calculate the local stress–strain field and service life of the test specimens, linear elastic and viscoplastic finite element studies have been performed and were assessed by means of a fracture mechanics-based lifetime model. The test results show the considerable influence of the temperature gradient on the low-cycle fatigue life for the investigated material. Both the radial temperature variation over the specimen wall with a hot outer surface and a cooled inner surface as well as the thermally induced stresses are stated to be the main drivers for the change in low-cycle fatigue life. The test results enhance the understanding of fatigue-damage mechanisms under local unsteady conditions and can be used as a basis for improved service life predictions.

References

1.
Boyce
,
M. P.
,
2011
,
Gas Turbine Engineering Handbook
,
Elsevier
,
Amsterdam, The Netherlands
.
2.
Thiele
,
M.
,
Gampe
,
U.
, and
Fischer
,
K. A.
,
2019
, “
Novel Test Facility for Investigation of the Impact of Thermally Induced Stress Gradients on Fatigue Life of Cooled Gas Turbine Components
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
32502
.10.1115/1.4041129
3.
Han
,
J.-C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
21007
.10.1115/1.4023826
4.
Bartsch
,
M.
,
Baufeld
,
B.
,
Heinzelmann
,
M.
,
Karlsson
,
A. M.
,
Dalkilic
,
S.
, and
Chernova
,
L.
,
2007
, “
Multiaxial Thermo‐Mechanical Fatigue on Material Systems for Gas Turbines
,”
Materialwiss. Werkstofftech.
,
38
(
9
), pp.
712
719
.10.1002/mawe.200700193
5.
Beck
,
T.
,
Trunova
,
O.
,
Herzog
,
R.
, and
Singheiser
,
L.
,
2012
, “
TBCs for Gas Turbines Under Thermomechanical Loadings: Failure Behaviour and Life Prediction
,”
EPJ Web Conf.
,
33
, p.
02001
.10.1051/epjconf/20123302001
6.
John
,
R.
,
Zawada
,
L. P.
, and
Kroupa
,
J. L.
,
2004
, “
Stresses Due to Temperature Gradients in Ceramic‐Matrix‐Composite Aerospace Components
,”
J. Am. Ceram. Soc.
,
82
(
1
), pp.
161
168
.10.1111/j.1151-2916.1999.tb01736.x
7.
Yuan
,
B.
,
Harvey
,
C. M.
,
Thomson
,
R. C.
,
Critchlow
,
G. W.
, and
Wang
,
S.
,
2017
, “
The Mechanics of Interface Fracture in Layered Composite Materials: (6) Spallation of Thermal Barrier Coatings of Turbine Blades
,” Chinese Society for Composite Materials,
Xi'an, China
, accessed Dec. 10, 2018, https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/25534/1/ICCM21%286%29fullpaperFormatted.pdf
8.
Thiele
,
M.
,
Weser
,
S.
,
Gampe
,
U.
,
Parchem
,
R.
, and
Forest
,
S.
,
2012
, “
Advancement of Experimental Methods and Cailletaud Material Model for Life Prediction of Gas Turbine Blades Exposed to Combined Cycle Fatigue
,”
ASME Paper No. GT2012-68452
.10.1115/GT2012-68452
9.
Serrano
,
L. F.
,
Schweizer
,
C.
,
Oechsner
,
M.
,
Scholz
,
A.
,
Mueller
,
F.
,
Berger
,
C.
,
Gumbsch
,
P.
,
Schlesinger
,
M.
, and
Eckmann
,
S.
,
2011
, “
Rissverhalten unter anisothermen Beanspruchungsbedingungen - Berechnungsverfahren für Nickelbasislegierungen: Abschlussbericht zum AiF-Forschungsvorhaben Nr. 15 525 N
,”
FVV, Frankfurt am Main
,
Germany
, Report No. 945.
10.
Krämer
,
K. M.
,
Eckmann
,
S.
,
Oechsner
,
M.
,
Gumbsch
,
P.
,
Scholz
,
A.
,
Müller
,
F.
,
Schweizer
,
C.
, and
Schlesinger
,
M.
,
2017
, “
TMF-Rissverhalten II, Zeitabhängiges Rissverhalten Unter Anisothermen Beanspruchungen -Entwicklung Und Validierung Von Berechnungsmethoden: Abschlussbericht Zum AiF-Forschungsvorhaben Nr. 17809 N
,”
FVV, Frankfurt am Main
,
Germany
, Report No. 1113.
11.
Schmitt
,
W.
,
Mohrmann
,
R.
,
Riedel
,
H.
,
Dietsche
,
A.
, and
Fischersworring-Bunk
,
A.
,
2002
, “
Modelling the Fatigue Life of Automobile Components
,”
Fatigue 2002—Proceedings of the Eighth International Fatigue Congress
,
Stockholm, Sweden
, June 3–7, pp.
781
788
.
12.
Shih
,
C. F.
,
1983
, “
Tables of Hutchinson-Rice-Rosengren Singular Field Quantities
,”
Brown University
,
Providence, RI
, Report No. MRL E-147.
13.
Heitmann
,
H. H.
,
Vehoff
,
H.
, and
Neumann
,
P.
,
1984
, “
Life Prediction for Random Load Fatigue Based on the Growth Behavior of Microcracks
,”
Advances in Fracture Research 84—Proc. of ICF6
, Vol.
5
,
Pergamon Press
,
Oxford and New York
, pp.
599
606
.
14.
Kumar
,
V.
,
German
,
M. D.
, and
Shih
,
C. F.
,
1983
, “
Engineering Approach for Elastic-Plastic Fracture Analysis
,”
Electric Power Research Institute
,
Palo Alto, CA
,
Report No. NP-1931
.10.2172/6068291
15.
He
,
M. Y.
, and
Hutchinson
,
J. W.
,
1981
, “
The Penny-Shaped Crack and the Plane Strain Crack in an Infinite Body of Power Law Material
,”
ASME J. Appl. Mech.
,
48
(
4
), pp.
830
840
.10.1115/1.3157742
16.
Riedel
,
H.
,
1987
,
Fracture at High Temperatures
,
Springer-Verlag
,
Heidelberg, Germany
.
17.
Khalil
,
O.
,
Schweizer
,
C.
,
Lang
,
K. H.
,
Seifert
,
T.
, and
von Hartrott
,
P.
,
2010
, “
Verbesserte Methoden Zur Lebensdauerberechnung Von Abgasturbolader-Radialverdichterrädern Aus Hochwarmfesten Aluminiumlegierungen: Abschlussbericht Zum FW-Forschungsvorhaben Nr. 897
,”.
FVV, Frankfurt am Main
,
Germany
, Report No. 911.
18.
Kvapilová
,
M.
,
Kuchařová
,
K.
,
Hrbáček
,
K.
, and
Sklenička
,
V.
,
2016
, “
Creep Processes in MAR-M247 Nickel-Base Superalloy
,”
Materials Structure & Micromechanics of Fracture VIII: Selected, Peer Reviewed Papers From the Eighth International Conference on Materials Structure & Micromechanics of Fracture (MSMF-8)
,
Brno, Czech Republic
, July 27–29, pp.
603
606
.https://www.scientific.net/SSP.258.603#:~:text=Abstract%3A,the%20creep%20deformation%20and%20fracture.
19.
Shirzadi
,
A.
, and
Jackson
,
S.
,
2014
,
Structural Alloys for Power Plants: Operational Challenges and High-Temperature Materials
,
Elsevier
,
Amsterdam, The Netherlands
.
20.
Thiele
,
M.
,
Gampe
,
U.
, and
Buchmann
,
K.
,
2017
, “
Accelerated Material Data Generation for Viscoplastic Material Models Based on Complex LCF and Incremental Creep Tests
,”
Mater. High Temp.
,
34
(
5–6
), pp.
311
322
.10.1080/09603409.2017.1378966
21.
Holländer
,
D.
,
Kulawinski
,
D.
,
Thiele
,
M.
,
Damm
,
C.
,
Henkel
,
S.
,
Biermann
,
H.
, and
Gampe
,
U.
,
2016
, “
Investigation of Isothermal and Thermo-Mechanical Fatigue Behavior of the Nickel-Base Superalloy IN738 LC Using Standardized and Advanced Test Methods
,”
Mater. Sci. Eng. A
,
670
, pp.
314
324
.10.1016/j.msea.2016.05.114
22.
ASTM
,
2004
, “
Standard Practice for Strain Controlled Thermomechanical Fatigue Testing
,”
ASTM International
,
West Conshohocken, PA
, Standard No. 2368–04.
23.
Hähner
,
P.
,
Affeldt
,
E.
,
Beck
,
T.
,
Klingelhöffer
,
H.
,
Loveday
,
M.
, and
Rinaldi
,
C.
,
2006
, “
Validated Code-of-Practice for Strain-Controlled Thermo-Mechanical Fatigue Testing
,”
Institute for Energy
,
Pettenll, The Netherlands
.https://www.researchgate.net/publication/265152601_Validated_Code-of-Practice_for_Strain-Controlled_Thermo-Mechanical_Fatigue_Testing
24.
Keshavarz
,
S.
, and
Ghosh
,
S.
,
2015
, “
Hierarchical Crystal Plasticity FE Model for Nickel-Based Superalloys: Sub-Grain Microstructures to Polycrystalline Aggregates
,”
Int. J. Solids Struct.
,
55
, pp.
17
31
.10.1016/j.ijsolstr.2014.03.037
25.
DeVoe
,
J. D.
,
Thomas
,
A.
,
DeVoe
,
R.
, and
Ginzbursky
,
E.
,
2018
, “
Gas Temperature Measurement in Engine Conditions Using Uniform Crystal Temperature Sensors (UCTS)
,”
ASME Paper No. GT2018-76890
.10.1115/GT2018-76890
You do not currently have access to this content.