Abstract

Generalized multiple-input-multiple-output (MIMO) controllers such as H and μ have not been widely adopted in the magnetic bearing industry, partially due to high computational cost relative to simpler single-input-single-output schemes. Computational cost is important to industrial magnetic bearing vendors as their controller hardware is based on embedded processors that have limited bandwidth. Studies to mitigate the problem of high-order controllers show the limit of the existing methods in order reduction while still maintaining satisfying robust performance. A novel method is proposed to reduce the computational cost of robust controllers by identifying bounds in their dynamic response, such that an implementation of a controller within those bounds results in the robust performance. The bounds are used to develop two computational cost reduction schemes for controller implementation, i.e., (1) identifying a dual-rate implementation of a single-rate controller which uniformly reduces the computational cost via interlacing technique, and (2) redesign of a controller by identifying its negligible dynamics based on the identified bounds in the controllers' dynamic response. The results of both approaches are demonstrated on two active magnetic bearing (AMB) systems, a model of a 300 kW turbine generator with permanent magnet biased AMBs, and an experimental high-speed AMB machining spindle. μ-synthesis controllers are designed for both systems, and the proposed method and schemes are applied accordingly. The comparison of standard implementations of the synthesized controllers and the proposed new implementations is presented. The results demonstrate considerable reduction in the computational cost in terms of required number of multiply accumulate (MAC) operations.

References

1.
Sawicki
,
J. T.
, and
Maslen
,
E. H.
,
2008
, “
Toward Automated AMB Controller Tuning: Progress in Identification and Synthesis
,”
The Eleventh International Symposium on Magnetic Bearings (ISMB-11)
,
Nara, Japan
, Aug. 26–28, pp.
68
74
.
2.
Sawicki
,
J. T.
,
Maslen
,
E. H.
, and
Bischof
,
K. R.
,
2007
, “
Modeling and Performance Evaluation of Machining Spindle With Active Magnetic Bearings
,”
J. Mech. Sci. Technol.
,
21
(
6
), pp.
847
850
.10.1007/BF03027055
3.
Fittro
,
R.
, and
Knospe
,
C.
,
2002
, “
Rotor Compliance Minimization Via mu-Control of Active Magnetic Bearings
,”
IEEE Trans. Control Syst. Technol.
,
10
(
2
), pp.
238
249
.10.1109/87.987069
4.
Ehmann
,
C.
,
Kytka
,
P.
, and
Nordmann
,
R.
,
2004
, “
Comparison of PID-, LQR- and Mu-Synthesis Control for Electromagnetic Suspension of a Flexible Rotor
,”
Seventh International Conference on Motion and Vibration Control
,
St, Louis, MO
, Aug. 8–11.
5.
van Dijk
,
N. J. M.
,
van de Wouw
,
N.
,
Doppenberg
,
E. J. J.
,
Oosterling
,
H. A. J.
, and
Nijmeijer
,
H.
,
2012
, “
Robust Active Chatter Control in the High-Speed Milling Process
,”
IEEE Trans. Control Syst. Technol.
,
20
(
4
), pp.
901
917
.10.1109/TCST.2011.2157160
6.
Ding
,
J.
,
Marcassa
,
F.
,
Wu
,
S.
, and
Tomizuka
,
M.
,
2006
, “
Multirate Control for Computation Saving
,”
IEEE Trans. Control Syst. Technol.
,
14
(
1
), pp.
165
169
.10.1109/TCST.2005.859641
7.
Bhattacharya
,
R.
, and
Balas
,
G. J.
,
2009
, “
Control in Computationally Constrained Environment
,”
IEEE Trans. Control Syst. Technol.
,
17
(
3
), pp.
589
599
.10.1109/TCST.2008.2001919
8.
Sahinkaya
,
A.
, and
Sawicki
,
J. T.
,
2020
, “
Computationally Efficient Implementation of Robust Controllers in Active Magnetic Bearing Systems
,”
Under Rev., Mech. Syst. Signal Process.
,
144
, p.
106902
.10.1016/j.ymssp.2020.106902
9.
Khatri
,
R.
,
Hawkins
,
L.
,
Neri
,
M. O.
,
Cangioli
,
F.
, and
Biliotti
,
D.
,
2019
, “
Design and Prototype Test Data for a 300 kW AMB-Supported Turbine Generator for Natural Gas Pressure Letdown
,”
ASME Paper No. GT2019-91172
.10.1115/GT2019-91172
10.
Sawicki
,
J. T.
, and
Maslen
,
E. H.
,
2007
, “
Rotordynamic Response and Identification of AMB Machining Spindle
,”
ASME Paper No. GT200728018
. 10.1115/GT200728018
11.
Schweitzer
,
G.
, and
Maslen
,
E.
,
2009
,
Magnetic Bearings: Theory, Design, and Application to Rotating Machinery
,
Springer
,
New York
.
12.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2007
,
Multivariable Feedback Control: Analysis and Design
, 2nd ed.,
Wiley
,
Chichester
.
13.
Friswell
,
M. I.
,
Penny
,
J. E.
,
Garvey
,
S. D.
, and
Lees
,
A. W.
,
2010
,
Dynamics of Rotating Machines
,
Cambridge University Press
,
Cambridge, UK
.
14.
MathWorks
,
2017
, “
MATLAB and Robust Control Toolbox Release
,”
The MathWorks
,
Natick, MA
.
15.
ISO TC108/SC2 Working Group 7, 2006, Active Magnetic Bearings - Evaluation of Stability Margin, ISO-14839-3.
16.
Wroblewski
,
A.
,
Sawicki
,
J.
, and
Pesch
,
A. H.
,
2011
, “
High-Speed AMB Machining Spindle Model Updating and Validation
,”
SPIE Smart Structures/NDE
,
San Diego, CA
, Apr. 18.10.1117/12.880778
17.
Wroblewski
,
A.
,
2011
,
Model Identification, Updating, and Validation of an Active Magnetic Bearing High-Speed Machining Spindle for Precision Machining Operation
,
Cleveland State University
,
Cleveland, OH
.
You do not currently have access to this content.