Abstract

Wind turbines operate in challenging environmental conditions. In hot and dusty climates, blades are constantly exposed to abrasive particles that, according to many field reports, cause significant damages to the leading edge. On the other hand, in cold climates similar effects can be caused by prolonged exposure to hail and rain. Quantifying the effects of airfoil deterioration on modern multi-MW wind turbines is crucial to correctly schedule maintenance and to forecast the potential impact on productivity. Analyzing the impact of damage on fatigue and extreme loading is also important to improve the reliability and longevity of wind turbines. In this work, a blade erosion model is developed and calibrated using computational fluid dynamics (CFD). The Danmarks Tekniske Universitet (DTU) 10 MW Reference Wind Turbine is selected as the case study, as it is representative of the future generation wind turbines. Lift and Drag polars are generated using the developed model and a CFD numerical setup. Power and torque coefficients are compared in idealized conditions at two wind speeds, i.e., the rated speed and one below it. Full aero-servo-elastic simulations of the turbine are conducted with the eroded polars using NREL's BEM-based code OpenFAST. Sixty-six 10-min simulations are performed for each stage of airfoil damage, reproducing operating conditions specified by the IEC 61400-1 power production DLC-group, including wind shear, yaw misalignment, and turbulence. Aeroelastic simulations are analyzed, showing maximum decreases in CP of about 12% as well as reductions in fatigue and extreme loading.

References

1.
International Electrotechnical Commisison
,
2005
, “
IEC61400-1:2005 Wind Turbines—Part1: Design Requirements
,” Geneva, Switzerland,
Report
https://webstore.iec.ch/publication/5426#:~:text=Wind%20turbines%20%2D%20Part%201%3A%20Design%20requirements&text=Provides%20an%20appropriate%20level%20of,mechanical%20systems%20and%20support%20structures.
2.
Dalili
,
N.
,
Edrisy
,
A.
, and
Carriveau
,
R.
,
2009
, “
A Review of Surface Engineering Issues Critical to Wind Turbine Performance
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
428
438
.10.1016/j.rser.2007.11.009
3.
Decoret
,
R.
,
2014
, “
Why Inspect Wind Turbine Blades?
,”
How to Avoind Major Wind Turbine Blade Damage and Cost
,
Wind Energy Consultancy
, Online, accessed Sept. 21, 2020, https://www.3e.eu/wp-content/uploads/2014/06/3E_Why-Wind-Turbine-Blade-Inspections_20140507_final.pdf
4.
Rempel
,
L.
, “
Rotor Blade Leading Edge Erosion—Real Life Experiences
,” Online, accessed Sept. 21, 2020, https://www.windsystemsmag.com/wp-content/uploads/pdfs/Articles/2012_October/1012_BladeFeature.pdf
5.
Keegan
,
M. H.
,
Nash
,
D. H.
, and
Stack
,
M. M.
,
2013
, “
On Erosion Issues Associated With the Leading Edge of Wind Turbine Blades
,”
J. Phys. D: Appl. Phys.
,
46
(
38
), p.
383001
.10.1088/0022-3727/46/38/383001
6.
Sapre
,
C. A.
,
2012
, “
Turbine Blade Erosion and the Use of Wind Protection Tape
,” Lambert Academic Publishing, p.
221
.
7.
Slot
,
H. M.
,
Gelinck
,
E. R. M.
,
Rentrop
,
C.
, and
van der Heide
,
E.
,
2015
, “
Leading Edge Erosion of Coated Wind Turbine Blades: Review of Coating Life Models
,”
Renewable Energy
,
80
, pp.
837
848
.10.1016/j.renene.2015.02.036
8.
Mishnaevsky
,
L.
,
2019
, “
Repair of Wind Turbine Blades: Review of Methods and Related Computational Mechanics Problems
,”
Renewable Energy
,
140
, pp.
828
839
.10.1016/j.renene.2019.03.113
9.
Ehrmann
,
R. S.
, and
White
,
E. B.
,
2010
, “
Effect of Blade Roughness on Transition and Wind Turbine Performance
,” SANDIA, Albuquerque, NM,
Report
.https://www.osti.gov/servlets/purl/1427238
10.
Timmer
,
W. A.
, and
Schaffarczyk
,
A. P.
,
2004
, “
The Effect of Roughness at High Reynolds Numbers on the Performance of Aerofoil DU 97-W-300Mod
,”
Wind Energy
,
7
(
4
), pp.
295
307
.10.1002/we.136
11.
Corten
,
G. P.
, and
Veldkamp
,
H. F.
,
2001
, “
Insects Can Halve Wind-Turbine Power
,”
Nature
,
412
(
6842
), pp.
41
42
.10.1038/35083698
12.
Dierer
,
S.
,
Oechslin
,
R.
, and
Cattin
,
R.
,
2011
, “
Wind Turbines in Icing Conditions: Performance and Prediction
,”
Adv. Sci. Res.
,
6
(
1
), pp.
245
250
.10.5194/asr-6-245-2011
13.
Sareen
,
A.
,
Sapre
,
C. A.
, and
Selig
,
M. S.
,
2014
, “
Effects of Leading Edge Erosion on Wind Turbine Blade Performance: Effects of Leading Edge Erosion
,”
Wind Energy
,
17
(
10
), pp.
1531
1542
.10.1002/we.1649
14.
Han
,
W.
,
Kim
,
J.
, and
Kim
,
B.
,
2018
, “
Effects of Contamination and Erosion at the Leading Edge of Blade Tip Airfoils on the Annual Energy Production of Wind Turbines
,”
Renewable Energy
,
115
, pp.
817
823
.10.1016/j.renene.2017.09.002
15.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
, “
Definition of a 5-MW Reference Wind Turbine for Offshore System Development
,” NREL, Golden, CO, Report No.
NREL/TP-500-38060
.https://www.nrel.gov/docs/fy09osti/38060.pdf
16.
Cavazzini
,
A.
,
Minisci
,
E.
, and
Campobasso
,
M. S.
,
2019
, “
Machine Learning-Aided Assessment of Wind Turbine Energy Losses Due to Blade Leading Edge Damage
,”
ASME
. Paper No. IOWTC2019-757810.1115/IOWTC2019-7578
17.
Ashuri
,
T.
,
Rotea
,
M.
,
Ponnurangam
,
C. V.
, and
Xiao
,
Y.
,
2016
, “
Impact of Airfoil Performance Degradation on Annual Energy Production and Its Mitigation Via Extremum Seeking Controls
,”
AIAA
Paper No. 2016-1738.10.2514/6.2016-1738
18.
Bak
,
C.
,
Zahle
,
F.
,
Bitsche
,
R.
,
Kim
,
T.
,
Yde
,
A.
,
Henriksen
,
L. C.
,
Natarajan
,
A.
, and
Hansen
,
M.
,
2013
, “
Description of the DTU 10 MW Reference Wind Turbine
,” DTU Wind Energy, Lyngby, Denmark, Report No.
Report-I-0092
.https://orbit.dtu.dk/files/55645274/The_DTU_10MW_Reference_Turbine_Christian_Bak.pdf
19.
Perez-Becker
,
S.
,
Papi
,
F.
,
Saverin
,
J.
,
Marten
,
D.
,
Bianchini
,
A.
, and
Paschereit
,
C. O.
,
2020
, “
Is the Blade Element Momentum Theory Overestimating Wind Turbine Loads?—A Comparison With a Lifting Line Free Vortex Wake Method
,”
Wind Energy Sci. Discuss.
, 5, pp.
721
743
.10.5194/wes-2019-70
20.
Gaudern
,
N.
,
2014
, “
A Practical Study of the Aerodynamic Impact of Wind Turbine Blade Leading Edge Erosion
,”
J. Phys.: Conf. Ser.
,
524
, p.
012031
.10.1088/1742-6596/524/1/012031
21.
Schramm
,
M.
,
Rahimi
,
H.
,
Stoevesandt
,
B.
, and
Tangager
,
K.
,
2017
, “
The Influence of Eroded Blades on Wind Turbine Performance Using Numerical Simulations
,”
Energies
,
10
(
9
), p.
1420
.10.3390/en10091420
22.
Drela
,
M.
,
1989
, “
XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils
,”
Low Reynolds Number Aerodynamics
,
T. J.
Mueller
, ed.,
Springer
,
Berlin Heidelberg, Berlin, Heidelberg
, pp.
1
12
.
23.
Viterna
,
L. A.
, and
Janetzke
,
D. C.
,
1982
, “
Theoretical and Experimental Power From Large Horizontal-Axis Wind Turbines
,” NASA, Cleveland, OH, Report No.
DOE/NASA/20320-41
.10.2172/6763041
24.
GitHub, 2019,
OpenFAST
,”
GitHub [Online],
accessed Oct. 31, 2019, https://github.com/OpenFAST
25.
Jonkman
,
J. M.
,
Hayman
,
G. J.
,
Jonkman
,
B. J.
, and
Damiani
,
R. R.
, 2018,
AeroDyn V15 User's Guide and Theory Manual
,
NREL, Golden, CO
.
26.
Burton
,
T.
,
Jenkins
,
N.
,
Sharpe
,
D.
, and
Bossanyi
,
E.
,
2011
,
Wind Energy Handbook
, 2nd ed.,
Wiley & Sons
, Hoboken, NJ.
27.
Jonkman
,
J.
,
2013
, “
Overview of the ElastoDyn Structural-Dynamics Module
,” NREL, Golden, CO, accessed Sept. 21, 2020, https://dokumen.tips/documents/overview-of-the-elastodyn-structural-dynamics-background-elastodyn-what-is.html
28.
Kane
,
T. R.
, and
Levinson
,
D. A.
, 2005,
Dynamics, Theory and Applications
,
McGraw-Hill, New York
.https://ecommons.cornell.edu/bitstream/1813/638/10/Dynamics-Theory_opt.pdf
29.
Perez-Becker
,
S.
,
Saverin
,
J.
,
Marten
,
D.
,
Alber
,
J.
,
Pechlivanoglou
,
G.
, and
Paschereit
,
C. O.
,
2018
, “
Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
,”
ASME
. Paper No. GT2018-76078.
30.
Hansen
,
M. H.
, and
Henriksen
,
L. C.
,
2013
, “Basic DTU Wind Energy Controller,” DTU Wind Energy, Lingby, Denmark, Report No.
0028
.https://github.com/DTUWindEnergy/BasicDTUController#:~:text=The%20basic%20DTU%20Wind%20Energy,the%20two%20modes%20of%20operation
31.
Iribas
,
M.
,
Hansen
,
M. H.
,
Mirzarei
,
M.
,
Tibaldi
,
C.
,
Natarajan
,
A.
,
Bossanyi
,
E.
,
Stock
,
A.
,
Jamieson
,
P.
,
Leithead
,
W.
, and
Schlipf
,
D.
,
2015
, “Methodology for Feed-Forward Control Strategies Using Nacelle or Blade Based Sensors and Distributed Control,” INNWIND Project Report, FP7 Grant Agreement No. 308974, accessed Sept. 21, 2020, http://www.innwind.eu
32.
Borg
,
M.
,
2015
,
LIFES50+ Del. D1.2: Wind Turbine Models for the Design
,
DTU Wind Energy
,
Risø, Denmark, Report No
. E-101.
33.
Hayman
,
G. J.
,
2012
, “
MLife Theory Manual for Version 1.00
,” NREL, Golden, CO,
Report
.https://www.nrel.gov/wind/nwtc/assets/pdfs/mlife-theory.pdf
34.
Cosack
,
N.
,
2010
, “
Fatigue Load Monitoring With Standard Wind Turbine Signals
,”
Ph.D. thesis
, Universitat Stuttgart, Stuttgart, Germany.https://elib.uni-stuttgart.de/bitstream/11682/3864/1/Thesis_Cosack_20101101.pdf
You do not currently have access to this content.