Abstract

This paper presents an experimental investigation of using a microperforated plate (MPP) backed by an adjustable cavity to mitigate the combustion instabilities of liquid fuel swirl flame. The acoustic properties of MPPs with different porosities and aperture diameters were first tested in an impedance tube. At low bias flow rates, the sound reflection coefficients of MPPs with large holes commensurate well with the Luong model, and at high bias flow rates, the results of MPPs with small holes agree well with the predictions. The maximum sound absorption coefficient of each panel at the target frequency exceeded 95%. The perforated panels were then selected and integrated into a spray combustor individually. It was shown that the maximum reduction of pressure and heat release fluctuations inside the chamber was 14.91 dB and 13.40 dB, respectively. After noise elimination, the main frequencies of pressure and CH* signals were slightly shifted toward low frequencies. When the combustion conditions change, the MPPs operating near the optimal bias flow rates still have good sound absorption characteristics. After noise suppression, the synchronization between pressure and heat release signals was reduced, and the flame shapes were relatively stable. More generally, this study can promote the application of MPPs under bias flow in stabilizing the liquid spray combustion.

References

1.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
2.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
3.
Zhao
,
D.
, and
Li
,
L.
,
2015
, “
Effect of Choked Outlet on Transient Energy Growth Analysis of a Thermoacoustic System
,”
Appl. Energy
,
160
, pp.
502
510
.10.1016/j.apenergy.2015.09.078
4.
Sarkar
,
S.
,
Chakravarthy
,
S. R.
,
Ramanan
,
V.
, and
Ray
,
A.
,
2016
, “
Dynamic Data-Driven Prediction of Instability in a Swirl-Stabilized Combustor
,”
Int. J. Spray Combust. Dyn.
,
8
(
4
), pp.
235
253
.10.1177/1756827716642091
5.
Yi
,
T.
, and
Santavicca
,
D. A.
,
2012
, “
Combustion Instability and Flame Structure of Turbulent Swirl-Stabilized Liquid-Fueled Combustion
,”
J. Propulsion Power
,
28
(
5
), pp.
1000
1014
.10.2514/1.B34438
6.
de la
,
C.
,
García
,
M.
,
Mastorakos
,
E.
, and
Dowling
,
A. P.
,
2009
, “
Investigations on the Self-Excited Oscillations in a Kerosene Spray Flame
,”
Combust. Flame
,
156
(
2
), pp.
374
384
.10.1016/j.combustflame.2008.11.018
7.
Patra
,
J.
,
Ghose
,
P.
,
Datta
,
A.
,
Das
,
M.
,
Ganguly
,
R.
,
Sen
,
S.
, and
Chatterjee
,
S.
,
2015
, “
Studies of Combustion Characteristics of Kerosene Ethanol Blends in an Axi-Symmetric Combustor
,”
Fuel
,
144
, pp.
205
213
.10.1016/j.fuel.2014.12.036
8.
Sakaki
,
K.
,
Funahashi
,
T.
,
Nakaya
,
S.
,
Tsue
,
M.
,
Kanai
,
R.
,
Suzuki
,
K.
,
Inagawa
,
T.
, and
Hiraiwa
,
T.
,
2018
, “
Longitudinal Combustion Instability of a Pintle Injector for a Liquid Rocket Engine Combustor
,”
Combust. Flame
,
194
, pp.
115
127
.10.1016/j.combustflame.2018.04.017
9.
Ahn
,
B.
,
Lee
,
J.
,
Jung
,
S.
, and
Kim
,
K. T.
,
2018
, “
Low-Frequency Combustion Instabilities of an Airblast Swirl Injector in a Liquid-Fuel Combustor
,”
Combust. Flame
,
196
, pp.
424
438
.10.1016/j.combustflame.2018.06.031
10.
Ahn
,
B.
,
Lee
,
J.
,
Jung
,
S.
, and
Kim
,
K. T.
,
2019
, “
Nonlinear Mode Transition Mechanisms of a Self-Excited Jet A-1 Spray Flame
,”
Combust. Flame
,
203
, pp.
170
179
.10.1016/j.combustflame.2019.02.008
11.
Vignat
,
G.
,
Durox
,
D.
,
Prieur
,
K.
, and
Candel
,
S.
,
2019
, “
An Experimental Study Into the Effect of Injector Pressure Loss on Self-Sustained Combustion Instabilities in a Swirled Spray Burner
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5205
5213
.10.1016/j.proci.2018.06.125
12.
Han
,
X.
,
Laera
,
D.
,
Morgans
,
A. S.
,
Lin
,
Y.
, and
Sung
,
C. J.
,
2018
, “
The Effect of Stratification Ratio on the Macrostructure of Stratified Swirl Flames: Experimental and Numerical Study
,”
Eng. Gas Turbines Power
,
140
, p.
121004
.10.1115/1.4040735
13.
Han
,
X.
,
Laera
,
D.
,
Morgans
,
A. S.
,
Sung
,
C. J.
,
Hui
,
X.
, and
Lin
,
Y. Z.
,
2019
, “
Flame Macrostructures and Thermoacoustic Instabilities in Stratified Swirling Flames
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5377
5384
.10.1016/j.proci.2018.06.147
14.
Lancien
,
T.
,
Prieur
,
K.
,
Durox
,
D.
,
Candel
,
S.
, and
Vicquelin
,
R.
,
2019
, “
Leading Point Behavior During the Ignition of an Annular Combustor With Liquid N-Heptane Injectors
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5021
5029
.10.1016/j.proci.2018.05.160
15.
Lahiri
,
C.
, and
Bake
,
F.
,
2017
, “
A Review of Bias Flow Liners for Acoustic Damping in Gas Turbine Combustors
,”
J. Sound Vib.
,
400
, pp.
564
605
.10.1016/j.jsv.2017.04.005
16.
Temiz
,
M. A.
,
Tournadre
,
J.
,
Arteaga
,
I. L.
, and
Hirschberg
,
A.
,
2016
, “
Non-Linear Acoustic Transfer Impedance of Micro-Perforated Plates With Circular Orifices
,”
J. Sound Vib.
,
366
, pp.
418
428
.10.1016/j.jsv.2015.12.022
17.
Lawn
,
C.
,
2016
, “
The Acoustic Impedance of Perforated Plates Under Various Flow Conditions Relating to Combustion Chamber Liners
,”
Appl. Acoust.
,
106
, pp.
144
154
.10.1016/j.apacoust.2016.01.005
18.
Tran
,
N.
,
Ducruix
,
S.
, and
Schuller
,
T.
,
2007
, “
Analysis and Control of Combustion Instabilities by Adaptive Reflection Coefficients
,”
AIAA
Paper No. 2007-3716.10.2514/6.2007-3716
19.
Tran
,
N.
,
Ducruix
,
S.
, and
Schuller
,
T.
,
2009
, “
Damping Combustion Instabilities With Perforates at the Premixer Inlet of a Swirled Burner
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2917
2924
.10.1016/j.proci.2008.06.123
20.
Tran
,
N.
,
Ducruix
,
S.
, and
Schuller
,
T.
,
2009
, “
Passive Control of the Inlet Acoustic Boundary of a Swirled Burner at High Amplitude Combustion Instabilities
,”
ASME J. Eng. Gas Turbines Power
,
131
(
5
), p.
051502
.10.1115/1.3078206
21.
Scarpato
,
A.
,
Ducruix
,
S.
, and
Schuller
,
T.
,
2013
, “
A Comparison of the Damping Properties of Perforated Plates Backed by a Cavity Operating at Low and High Strouhal Numbers
,”
C. R. Mec.
,
341
(
1–2
), pp.
161
170
.10.1016/j.crme.2012.10.016
22.
Scarpato
,
A.
,
Ducruix
,
S.
, and
Schuller
,
T.
,
2013
, “
Optimal and Off-Design Operations of Acoustic Dampers Using Perforated Plates Backed by a Cavity
,”
J. Sound Vib.
,
332
(
20
), pp.
4856
4875
.10.1016/j.jsv.2013.03.030
23.
Scarpato
,
A.
,
Tran
,
N.
,
Ducruix
,
S.
, and
Schuller
,
T.
,
2012
, “
Modeling the Damping Properties of Perforated Screens Traversed by a Bias Flow and Backed by a Cavity at Low Strouhal Number
,”
J. Sound Vib.
,
331
(
2
), pp.
276
290
.10.1016/j.jsv.2011.09.005
24.
Lu
,
C.
,
Chen
,
W.
,
Zhu
,
Y.
,
Du
,
S.
, and
Liu
,
Z.
,
2018
, “
Comparison Analysis and Optimization of Composite Micro-Perforated Absorbers in Sound Absorption Bandwidth
,”
Acoust. Aust.
,
46
(
3
), pp.
305
315
.10.1007/s40857-018-0140-0
25.
Oh
,
S.
,
Shin
,
Y.
, and
Kim
,
Y.
,
2016
, “
Stabilization Effects of Perforated Plates on the Combustion Instability in a Lean Premixed Combustor
,”
Appl. Therm. Eng.
,
107
, pp.
508
515
.10.1016/j.applthermaleng.2016.06.143
26.
Zhou
,
H.
,
Meng
,
S.
,
Tao
,
C.
, and
Liu
,
Z.
,
2019
, “
Low-Frequency Sound Absorptive Properties of Dual Perforated Plates Under Bias Flow
,”
Appl. Acoust.
,
146
, pp.
420
428
.10.1016/j.apacoust.2018.11.027
27.
Luong
,
T.
,
Howe
,
M. S.
, and
McGowan
,
R. S.
,
2005
, “
On the Rayleigh Conductivity of a Bias-Flow Aperture
,”
J. Fluids Struct.
,
21
(
8
), pp.
769
778
.10.1016/j.jfluidstructs.2005.09.010
28.
Meng
,
S.
,
Zhou
,
H.
, and
Cen
,
K.
,
2019
, “
Application of the Perforated Plate in Passive Control of the Nonpremixed Swirl Combustion Instability Under Acoustic Excitation
,”
ASME J. Eng. Gas Turbines Power
,
141
(
9
), pp.
1
12
.10.1115/1.4043848
29.
Tayong
,
R.
,
2013
, “
On the Holes Interaction and Heterogeneity Distribution Effects on the Acoustic Properties of Air-Cavity Backed Perforated Plates
,”
Appl. Acoust.
,
74
(
12
), pp.
1492
1498
.10.1016/j.apacoust.2013.05.016
30.
Hughes
,
I. J.
, and
Dowling
,
A. P.
,
1990
, “
The Absorption of Sound by Perforated Linings
,”
J. Fluid Mech.
,
218
(
1
), pp.
299
335
.10.1017/S002211209000101X
31.
Chung
,
J. Y.
, and
Blaser
,
D. A.
,
1980
, “
Transfer Function Method of Measuring in-Duct Acoustic Properties. I. Theory
,”
Acoust. Soc. Am.
,
68
(
3
), pp.
907
913
.10.1121/1.384778
32.
Chung
,
J. Y.
, and
Blaser
,
D. A.
,
1980
, “
Transfer Function Method of Measuring in-Duct Acoustic Hr
,”
Acoust. Soc. Am.
,
68
(
3
), pp.
914
921
.10.1121/1.384779
33.
Heydarlaki
,
R.
,
Aitchison
,
W.
,
Kostka
,
P.
, and
Kheirkhah
,
S.
,
2019
, “
Influences of Initial and Transient Combustor Wall-Temperature on Thermoacoustic Oscillations of a Small-Scale Power Generator
,”
Exp. Therm. Fluid Sci.
,
109
, p.
109856
.10.1016/j.expthermflusci.2019.109856
34.
Langhorne
,
P. J.
,
Dowling
,
A. P.
, and
Hooper
,
N.
,
1990
, “
Practical Active Control System for Combustion Oscillations
,”
J. Propulsion Power
,
6
(
3
), pp.
324
333
.10.2514/3.25437
35.
Annaswamy
,
A. M.
,
El Rifai
,
O. M.
,
Fleifil
,
M.
,
Hathout
,
J. P.
, and
Ghoniem
,
A. F.
,
1998
, “
A Model-Based Self-Tuning Controller For Thermoacoustic Instability
,”
Combust. Sci. Technol.
,
135
(
1–6
), pp.
213
240
.10.1080/00102209808924158
36.
Hathout
,
J. P.
,
Annaswamy
,
A. M.
,
Fleifil
,
M.
, and
Ghoniem
,
A. F.
,
1998
, “
A Model-Based Active Control Design for Thermoacoustic Instability
,”
Combust. Sci. Technol.
,
132
(
1–6
), pp.
99
138
.10.1080/00102209808952012
37.
Fleifil
,
M.
,
Hathout
,
J. P.
,
Annaswamy
,
A. M.
, and
Ghoniem
,
A. F.
,
1998
, “
The Origin of Secondary Peaks With Active Control of Thermoacoustic Instability
,”
Combust. Sci. Technol.
,
133
(
4–6
), pp.
227
265
.10.1080/00102209808952036
38.
Cohen
,
J. M.
, and
Banaszuk
,
A.
,
2003
, “
Factors Affecting the Control of Unstable Combustors
,”
J. Propulsion Power
,
19
(
5
), pp.
811
821
.10.2514/2.6196
39.
Zhao
,
D.
,
Lu
,
Z.
,
Zhao
,
H.
,
Li
,
X. Y.
,
Wang
,
B.
, and
Liu
,
P.
,
2018
, “
A Review of Active Control Approaches in Stabilizing Combustion Systems in Aerospace Industry
,”
Prog. Aerosp. Sci.
,
97
, pp.
35
60
.10.1016/j.paerosci.2018.01.002
You do not currently have access to this content.