Abstract

To advance compression ignition combustion strategies, researchers have evaluated fuel property effects and their impact on achieving higher efficiencies and lower emissions levels relative to current capabilities. Within the Department of Energy's Co-Optima initiative, there has been a recent focus on understanding the influence of fuel properties on fuel injection performance. To help identify candidate fuels that can meet desired injector performance metrics, a computational fuel screening tool is under development that can link fuel properties with the tendency of a given fuel to cavitate and lead to cavitation-induced erosion. In the initial development of this tool, five liquid fuel properties were selected to represent candidate fuels, namely, density, viscosity, vapor pressure, surface tension, and heat of vaporization. A design of experiments methodology was used to generate a set of pseudofuel cases, which can represent the main effects and interactions among the fuel properties and be related to cavitation erosion predictions. Large eddy simulations were performed using a mixture modeling approach to predict the cavitation and erosion propensity of these pseudofuels in terms of the mean fuel vapor mole fraction and stored impact energy from repeated cloud collapse events. The low-order regression models generated from this study revealed the importance of liquid fuel density on cavitation formation, whereas liquid viscosity was found to have a strong negative correlation with erosion severity. The surrogate models were then used in the fuel screening tool to rank the cavitation and erosion tendency of four candidate single-component fuels: methyl decanoate, iso-octane, ethanol, and n-dodecane. While the fuel screening tool was not able to quantitatively predict the cavitation and erosion response metrics, the tool was able to accurately rank the relative cavitation and erosion propensity of the four fuels. Overall, ethanol and iso-octane were observed to produce the highest levels of cavitation and erosion, respectively.

References

1.
Shi
,
J.
, and
Arafin
,
M. S.
,
2010
, “
CFD Investigation of Fuel Property Effect on Cavitating Flow in Generic Nozzle Geometries
,”
23rd Annual Conference on Liquid Atomization and Spray Systems
(
ILASS-Europe
), Brno, Czech Republic, September, Paper No. 90.http://www.ilasseurope.org/ICLASS/ilass2010/FILES/FULL_PAPERS/090.pdf
2.
Torelli
,
R.
,
Som
,
S.
,
Pei
,
Y.
,
Zhang
,
Y.
, and
Traver
,
M.
,
2017
, “
Influence of Fuel Properties on Internal Nozzle Flow Development in a Multi-Hole Diesel Injector
,”
Fuel
,
204
, pp.
171
184
.10.1016/j.fuel.2017.04.123
3.
Battistoni
,
M.
,
Grimaldi
,
C.
, and
Mariani
,
F.
,
2012
, “
Coupled Simulation of Nozzle Flow and Spray Formation Using Diesel and Biodiesel for CI Engine Applications
,”
SAE
Paper No. 2012-01-1267. 10.4271/2012-01-1267
4.
Agarwal
,
A. K.
,
Som
,
S.
,
Shukla
,
P. C.
,
Goyal
,
H.
, and
Longman
,
D. E.
,
2015
, “
In-Nozzle Flow and Spray Characteristics for Mineral Diesel, Karanja, and Jatropha Biodiesels
,”
Appl. Energy
,
156
, pp.
138
148
.10.1016/j.apenergy.2015.07.003
5.
Som
,
S.
,
Longman
,
D. E.
,
Ramírez
,
A. I.
, and
Aggarwal
,
S. K.
,
2010
, “
A Comparison of Injector Flow and Spray Characteristics of Biodiesel With Petrodiesel
,”
Fuel
,
89
(
12
), pp.
4014
4024
.10.1016/j.fuel.2010.05.004
6.
Saha
,
K.
,
Abu-Ramadan
,
E.
, and
Li
,
X.
,
2014
, “
Modified Single-Fluid Cavitation Model for Pure Diesel and Biodiesel Fuels in Direct Injection Fuel Injectors
,”
ASME J. Eng. Gas Turbines Power
,
135
, pp.
062801
1
062801-8
.10.1115/1.4023464
7.
Battistoni
,
M.
, and
Grimaldi
,
C. N.
,
2010
, “
Analysis of Transient Cavitating Flows in Diesel Injectors Using Diesel and Biodiesel Fuels
,”
SAE Int. J. Fuels Lubr.
,
3
(
2
), pp.
879
900
.10.4271/2010-01-2245
8.
Arai
,
M.
,
Shimizu
,
M.
, and
Hiroyasu
,
H.
,
1991
, “
Similarity Between the Breakup Lengths of a High Speed Liquid Jet in Atmospheric and Pressurized Conditions
,”
5th International Conference on Liquid Atomization and Spray Systems (ICLASS)
, Gaithersburg, MD, July 15–18, Paper No. 61.
9.
Hiroyasu
,
H.
,
Arai
,
M.
, and
Shimizu
,
M.
,
1991
, “
Break-Up Length of a Liquid Jet and Internal Flow in a Nozzle
,”
5th International Conference on Liquid Atomization and Spray Systems
(
ICLASS
), Gaithersburg, MD, July 15–18, Paper No. 26.https://www.semanticscholar.org/paper/Break-up-Length-of-a-Liquid-Jet-and-Internal-Flow-a-Hiroyasu/222bbea76c2ca220db215c5ae5b136fda116b4a8
10.
Soteriou
,
C.
,
Andrews
,
R.
, and
Smith
,
M.
,
1995
, “
Direct Injection Diesel Sprays and the Effect of Cavitation and Hydraulic Flip on Atomization
,”
SAE
Paper No. 950080. 10.4271/950080
11.
Tzanetakis
,
T.
,
Traver
,
M.
,
Costanzo
,
V.
,
Medina
,
R.
,
Nelson
,
J.
,
Matusik
,
K.
,
Sforzo
,
B.
,
Kastengren
,
A.
, and
Powell
,
C.
,
2019
, “
Durability Study of a High Pressure Common Rail Fuel Injection System Using Lubricity Additive Dosed Gasoline-Like Fuel - Additional Cycle Runtime and Teardown Analysis
,”
SAE
Paper No. 2019-01-0263. 10.4271/2019-01-0263
12.
Skoda
,
R.
,
Iben
,
U.
,
Morozov
,
A.
,
Mihatsch
,
M.
,
Schmidt
,
S.
, and
Adams
,
N.
,
2011
, “
Numerical Simulation of Collapse Induced Shock Dynamics for the Prediction of the Geometry, Pressure and Temperature Impact on the Cavitation Erosion in Micro Channels
,”
WIMRC 3rd International Cavitation Forum
,
University of Warwick
,
Coventry, UK
, July 4–6, pp.
1
10
.10.13140/2.1.2676.9287
13.
Magnotti
,
G. M.
,
Battistoni
,
B.
,
Saha
,
K.
, and
Som
,
S.
,
2018
, “
Evaluation of a New Cavitation Erosion Metric Based on Fluid-Solid Energy Transfer in Channel Flow Simulations
,”
14th Triennial International Conference on Liquid Atomization and Spray Systems
(
ICLASS
), Chicago, IL, July 22–26, Paper No. 114.https://arxiv.org/abs/1810.03287
14.
Dular
,
M.
, and
Petkovšek
,
M.
,
2015
, “
On the Mechanisms of Cavitation Erosion – Coupling High Speed Videos to Damage Patterns
,”
Exp. Therm. Fluid Sci.
,
68
(
1
), pp.
359
370
.10.1016/j.expthermflusci.2015.06.001
15.
Magnotti
,
G. M.
, and
Som
,
S.
,
2019
, “
Development of a Screening Tool to Assess Fuel Property Effects on Cavitation and Erosion Propensity
,”
ILASS-Americas 30th Annual Conference on Liquid Atomization and Spray Systems
, Tempe, AZ, May 13–15, Paper No. 45.
16.
Battistoni
,
M.
,
Duke
,
D.
,
Swantek
,
A. B.
,
Tilocco
,
F. Z.
,
Powell
,
C. F.
, and
Som
,
S.
,
2015
, “
Effects of Non-Condensable Gas on Cavitating Nozzles
,”
Atom. Sprays
,
25
(
6
), pp.
453
483
.10.1615/AtomizSpr.2015011076
17.
Mihatsch
,
M. S.
,
2016
, “
Numerical Prediction of Erosion and Degassing Effects in Cavitating Flows
,”
Ph.D. thesis
,
Technische Universität München
,
Munich, Germany
.https://www.semanticscholar.org/paper/Numerical-Prediction-of-Erosion-and-Degassing-in-Mihatsch/e4cd076a28123083780455017e71a6c9c12424d3
18.
Magnotti
,
G. M.
,
Battistoni
,
B.
,
Saha
,
K.
, and
Som
,
S.
,
2019
, “
Influence of Turbulence and Thermophysical Fluid Properties on Cavitation Erosion Predictions in Channel Flow Geometries
,”
SAE
Paper No. 2019-01-0290. 10.4271/2019-01-0290
19.
Magnotti
,
G. M.
,
Battistoni
,
M.
,
Saha
,
K.
, and
Som
,
S.
,
2019
, “
Linking Cavitation Collapse Energy With the Erosion Incubation Period
,”
29th European Conference on Liquid Atomization and Spray Systems (ILASS-Europe)
, Paris, France, Sept. 2–4, Paper No. 251240.
20.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
.
21.
Jang
,
W.
, and
Aral
,
M. M.
,
2003
, “
Concentration Evolution of Gas Species Within a Collapsing Bubble in a Liquid Medium
,”
Environ. Fluid Mech..
3
(
3
), pp.
173
193
.10.1023/A:1022831621213
22.
Iben
,
U.
,
Wolf
,
F.
,
Freudigmann
,
H.-A.
, and
Fröhlich
,
W. H. J.
,
2014
, “
Optical Measurements of Gas Bubbles in Oil Behind a Cavitating Micro-Orifice Flow
,”
Exp. Fluids,
56
(
6
), pp.
1
10
.10.1007/s00348-015-1979-6
23.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2018
, “
CONVERGE 2.3 Manual
,” Convergent Science, Madison, WI.
24.
Werner
,
H.
, and
Wengle
,
H.
,
1991
, “
Large Eddy Simulation of Turbulent Flow Over and Around a Cube in a Plane Channel
,” Turbulent Shear Flows 8, Springer, Berlin, pp. 155–168.10.1007/978-3-642-77674-8_12
25.
Pomraning
,
E.
,
2000
, “
Development of Large Eddy Simulation Turbulence Models
,”
Ph.D. thesis
,
University of Wisconsin-Madison
,
Madison, WI
.10.13140/2.1.2035.7929
26.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
27.
Bilicki
,
Z.
, and
Kestin
,
J.
,
1990
, “
Physical Aspects of the Relaxation Model in Two-Phase Flow
,”
Proc. R. Soc. Lond. A.
,
428
, pp.
379
397
.10.1098/rspa.1990.0040
28.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
29.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1987
, “
Fluid Mechanics
,”
Course of Theoretical Physics
, 2nd ed., Vol.
6
, Pergamon Press, Elmsford, New York.
30.
Hattori
,
S.
,
Mori
,
H.
, and
Okada
,
T.
,
1998
, “
Quantitative Evaluation of Cavitation Erosion
,”
ASME J. Fluids Eng.
,
120
(
1
), pp.
179
185
.10.1115/1.2819644
31.
Hammitt
,
F. G.
, and
De
,
M. K.
,
1979
, “
Cavitation Erosion of Aluminum Considering Bubble Collapse, Pulse Height Spectra and Cavitation Erosion Efficiency
,”
Wear
,
55
(
2
), pp.
221
234
.10.1016/0043-1648(79)90154-6
32.
SAS Institute Inc.,
2018
,
JMP® 14 Fitting Linear Models
,
SAS Institute Inc
.,
Cary, NC
.
33.
Taguchi
,
G.
,
1986
,
Orthogonal Arrays and Linear Graphs
,
American Supplier Institute, Inc
.,
Dearborn, MI
.
34.
Myers
,
R. H.
, and
Montgomery
,
D. C.
,
2002
,
Response Surface Methodology: Product and Process Optimization Using Designed Experiments
, 2nd ed.,
Wiley
,
New York
.
35.
Akaike
,
H.
,
1974
, “
A New Look at the Statistical Model Identification
,”
IEEE Trans. Autom. Control AC
,
19
(
6
), pp.
716
723
.10.1109/TAC.1974.1100705
36.
Heinze
,
G.
, and
Dunkler
,
D.
,
2017
, “
Five Myths About Variable Selection
,”
Transpl. Int.
,
30
(
1
), pp.
6
10
.10.1111/tri.12895
37.
Fisher
,
R. A.
,
1992
, “
Statistical Methods for Research Workers
,”
Breakthroughs in Statistics
,
Kotz
,
S.
, and
Johnson
,
N. L.
, eds. (
Springer Series in Statistics—Perspectives in Statistics
),
Oliver and Boyd, Edinburgh, Scotland
.
38.
Sobol
,
I. M.
,
1993
, “
Sensitivity Estimates for Nonlinear Mathematical Models
,”
Math. Model. Comput. Exp.
,
1
(
4
), pp.
407
414
https://scinapse.io/papers/102464277.
39.
Saltelli
,
A.
,
2002
, “
Making Best Use of Model Evaluations to Compute Sensitivity Indices
,”
Comput. Phys. Commun.
,
145
(
2
), pp.
280
297
.10.1016/S0010-4655(02)00280-1
40.
Mikhail
,
N. M.
, and
El-Tantawy
,
M. R.
,
1993
, “
Effect of the Medium Viscosity of Sound Propagation and Attenuation in Ducts
,”
J. Comput. Appl. Math.
,
45
(
3
), pp.
283
298
.10.1016/0377-0427(93)90046-E
You do not currently have access to this content.