Abstract

The paper considers a generic model for a turbofan engine coupled to electromechanical (EM) elements used for energy conversion and storage in electric form. The electromechanical systems apply torque to the engine shafts, allowing for controllable power injection or extraction to and from the engine. The standard proportional-integral (PI) control law used to command fuel flow for turbofan speed regulation is maintained for compatibility with industry practices, leaving the electromechanical torque to be specified. The paper adopts an optimal control approach for this purpose, where a weighted combination of electric energy consumption and fuel consumption is minimized subject to the dynamics of the electrified propulsion system. The solution for the optimal torques is given by linear state feedback plus bias, with gains calculated numerically from engine linearization data. Energy balance equations are derived and used to guide the optimization, evaluate the resulting power distributions, and check for errors. Simulation studies are presented for a chop-burst transient and for a realistic flight mission profile with environmental input variations. The paper shows the economic advantage of operating the engine with the electrified components. Specifically, fuel burn can be reduced in exchange for electric energy, which must be replenished, but at lower cost.

References

1.
Mitcham
,
A. J.
, and
Cullen
,
J. J. A.
,
2002
, “
Permanent Magnet Generator Options for the More Electric Aircraft
,”
International Conference on Power Electronics, Machines and Drives (Conference Publication No. 487)
, Sante Fe, NM, June 4-7, pp.
241
245
.10.1049/cp:20020121
2.
Wall
,
T. J.
, and
Meyer
,
R.
,
2017
, “
A Survey of Hybrid Electric Propulsion for Aircraft
,”
AIAA
Paper No. 2017-4700.10.2514/6.2017-4700
3.
Epstein
,
A.
, and
O'Flarity
,
S.
,
2019
, “
Considerations for Reducing Aviation's CO2 With Aircraft Electric Propulsion
,”
J. Propul. Power
,
35
(
3
), pp.
572
582
.10.2514/1.B37015
4.
Friedrich
,
C.
, and
Robertson
,
P.
,
2015
, “
Hybrid-Electric Propulsion for Aircraft
,”
J. Aircr.
,
52
(
1
), pp.
176
189
.10.2514/1.C032660
5.
Hoelzen
,
J.
,
Liu
,
Y.
,
Bensmann
,
B.
,
Winnefeld
,
C.
,
Elham
,
A.
,
Friedrichs
,
J.
, and
Hanke-Rauschenbach
,
R.
,
2018
, “
Conceptual Design of Operation Strategies for Hybrid Electric Aircraft
,”
Energies
,
11
(
1
), p.
217
.10.3390/en11010217
6.
Kim
,
J. S.
,
Powell
,
K. M.
, and
Edgar
,
T. F.
,
2013
, “
Nonlinear Model Predictive Control for a Heavy-Duty Gas Turbine Power Plant
,”
American Control Conference
, Washington, DC, June 17–19, pp.
2952
2957
.10.1109/ACC.2013.6580283
7.
Chapman
,
J.
,
2014
, “
Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) User's Guide
,” NASA, Cleveland, OH, Report No.
2014-216638
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140012486.pdf
8.
Seok
,
J.
,
Kolmanovsky
,
I.
, and
Girard
,
A.
,
2017
, “
Coordinated Model Predictive Control of Aircraft Gas Turbine Engine and Power System
,”
J. Guid., Control, Dyn.
,
40
(
10
), pp.
2538
2555
.10.2514/1.G002562
9.
Seok
,
J.
,
Reed
,
D. M.
,
Kolmanovsky
,
I. V.
, and
Girard
,
A. R.
,
2018
, “
Coordinated Model Predictive Control of Aircraft Gas Turbine Engine With Simplified Electrical System Model
,”
American Control Conference
, Milwaukee, WI, June 27–29, pp.
1460
1466
.10.23919/ACC.2018.8431504
10.
Todd
,
R.
,
Wu
,
D.
,
dos Santos Girio
,
A.
,
Poucand
,
M.
, and
Forsyth
,
A.
,
2010
, “
Supercapacitor-Based Energy Management for Future Aircraft Systems
,”
Applied Power Electronics Conference Exposition
, Palm Springs, CA, Feb. 21–25, pp.
1306
1312
.10.1109/APEC.2010.5433398
11.
Connolly
,
J. W.
,
Chapman
,
J. W.
,
Stalcup
,
E. J.
,
Chicatelli
,
A.
, and
Hunker
,
K. R.
,
2018
, “
Modeling and Control Design for a Turboelectric Single Aisle Aircraft Propulsion System
,”
AIAA
Paper No. 2018-5010.10.2514/6.2018-5010
12.
Kratz
,
J. L.
, and
Thomas
,
G. L.
,
2019
, “
Dynamic Analysis of the STARC-ABL Propulsion System
,”
AIAA
Paper No. 2019-4182.10.2514/6.2019-4182
13.
Culley
,
D. E.
,
Kratz
,
J. L.
, and
Thomas
,
G. L.
,
2018
, “
Turbine Electrified Energy Management (Teem) for Enabling More Efficient Engine Designs
,”
Joint Propulsion Conference
, Cincinnati, OH, July 9–11, Paper No.
2018
4798
.10.2514/6.2018-4798
14.
Norman
,
P. J.
,
Galloway
,
S. J.
,
Burt
,
G. M.
,
Hill
,
J. E.
, and
Trainer
,
D. R.
,
2008
, “
Evaluation of the Dynamic Interactions Between Aircraft Gas Turbine Engine and Electrical System
,”
Fourth IET Conference on Power Electronics, Machines and Drives
, York, UK, Apr. 2–4, pp.
671
675
.10.1049/cp:20080606
15.
Conway
,
B. E.
,
2013
,
Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications
,
Springer Science & Business Media
, Berlin.
16.
Mazda
,
2016
, “
Brake Energy Regeneration System
,” Mazda Motor Corporation, Hiroshima, Japan.https://www.mazda.com/en/innovation/technology/env/i-eloop/
17.
Vinot
,
E.
, and
Trigui
,
R.
,
2013
, “
Optimal Energy Management of Hevs With Hybrid Storage System
,”
Energy Convers. Manage.
,
76
, pp.
437
452
.10.1016/j.enconman.2013.07.065
18.
Song
,
Z.
,
Hofmann
,
H.
,
Li
,
J.
,
Hou
,
J.
,
Han
,
X.
, and
Ouyang
,
M.
,
2014
, “
Energy Management Strategies Comparison for Electric Vehicles With Hybrid Energy Storage System
,”
Appl. Energy
,
134
, pp.
321
331
.10.1016/j.apenergy.2014.08.035
19.
Howe
,
M.
,
2015
, “
Fastest Charging Electric Bus Charges in 10 Seconds
,” Electric Vehicle News.http://www.electric-vehiclenews.com/2015/08/worlds-fastest-charging-electric-bus.html
20.
Shimizu
,
T.
, and
Underwood
,
C.
,
2013
, “
Super-Capacitor Energy Storage for Micro-Satellites: Feasibility and Potential Mission Applications
,”
Acta Astronaut.
,
85
, pp.
138
154
.10.1016/j.actaastro.2012.12.005
21.
Khoshnoud
,
F.
,
Zhang
,
Y.
,
Shimura
,
R.
,
Shahba
,
A.
,
Jin
,
G.
,
Pissanidis
,
G.
,
Chen
,
Y. K.
, and
De Silva
,
C. W.
,
2015
, “
Energy Regeneration From Suspension Dynamic Modes and Self-Powered Actuation
,”
IEEE/ASME Trans. Mechatronics
,
20
(
5
), pp.
2513
2524
.10.1109/TMECH.2015.2392551
22.
Richter
,
H.
,
Simon
,
D.
, and
van den Bogert
,
A.
,
2014
, “
Semiactive Virtual Control Method for Robots With Regenerative Energy-Storing Joints
,”
Proceedings of 19th IFAC World Congress
, Cape Town, South Africa, Aug. 24–29, pp.
10244
10250
.10.3182/20140824-6-ZA-1003.00332
23.
Richter
,
H.
,
2015
, “
A Framework for Control of Robots With Energy Regeneration
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
9
), p.
091004
.10.1115/1.4030391
24.
Khalaf
,
P.
,
2019
, “
Design, Control, and Optimization of Robots With Advanced Energy Regenerative Drive Systems
,”
Ph.D. thesis
,
Cleveland State University
, Cleveland, OH.https://engagedscholarship.csuohio.edu/etdarchive/1125/
25.
Khalaf
,
P.
, and
Richter
,
H.
,
2020
, “
Trajectory Optimization of Robots With Regenerative Drive Systems: Numerical and Experimental Results
,”
IEEE Trans. Rob.
,
36
(
2
), pp.
501
16
.10.1109/TRO.2019.2923920
26.
Ghorbanpour
,
A.
, and
Richter
,
H.
,
2018
, “
Control With Optimal Energy Regeneration in Robot Manipulators Driven by Brushless DC Motors
,”
ASME
Paper No. DSCC2018-8972.10.1115/DSCC2018-8972
27.
Jaw
,
L.
, and
Mattingly
,
J.
,
2009
,
Aircraft Engine Controls: Design, System Analysis, and Health Monitoring
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
28.
Richter
,
H.
,
2011
,
Advanced Control of Turbofan Engines
,
Springer Science+ Business Media
, Berlin.
29.
Warner
,
H.
,
Simon
,
D.
, and
Richter
,
H.
,
2016
, “
Design Optimization and Control of a Crank-Slider Actuator for a Lower-Limb Prosthesis With Energy Regeneration
,”
IEEE International Conference on Advanced Intelligent Mechatronics
, Banff, AB, Canada, July
12
15
.10.1109/AIM.2016.7576971
30.
Khalaf
,
P.
, and
Richter
,
H.
,
2018
, “
On Global, Closed-Form Solutions to Parametric Optimization Problems for Robots With Energy Regeneration
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
3
), p.
031003
.10.1115/1.4037653
31.
Khalaf
,
P.
, and
Richter
,
H.
,
2016
, “
Parametric Optimization of Stored Energy in Robots With Regenerative Drive Systems
,” IEEE International Conference on Advanced Intelligent Mechatronics (
AIM
), Banff, AB, Canada, July 12–15, pp.
1424
1429
.10.1109/AIM.2016.7576970
32.
Khalaf
,
P.
,
Warner
,
H.
,
Hardin
,
E.
,
Richter
,
H.
, and
Simon
,
D.
,
2018
, “
Development and Experimental Validation of an Energy Regenerative Prosthetic Knee Controller and Prototype
,”
ASME
Paper No. DSCC2018-9091.10.1115/DSCC2018-9091
33.
Kirk
,
D. E.
,
2004
,
Optimal Control Theory: An Introduction
,
Dover, Mineola, NY.
34.
NASA
, 2019, “
Data Mining and Systems Health Database (Dash-Link
),” NASA, Washington, DC, accessed Nov. 2019, https://c3.nasa.gov/dashlink/
35.
Coello
,
C.
,
Lamont
,
G.
, and
van Veldhuizen
,
D.
,
2007
,
Evolutionary Algorithms for Solving Multi-Objective Problems
,
Springer-Verlag US
, Berlin.
You do not currently have access to this content.