Abstract

In-cylinder temperature is a critical quantity for modeling and understanding combustion dynamics in internal combustion engines (ICEs). It is difficult to measure in small, two-stroke engines due to high operational speeds and limited space to install instrumentation. Optical access was established in a 55-cm3 displacement two-stroke engine using M4 bolts as carriers for sapphire rods to establish a 1.5-mm diameter optical path through the combustion chamber. Temperature laser absorption spectroscopy was successfully used to measure time varying in-cylinder temperature clocked to the piston position with a resolution of 3.6 crank angle degrees (CAD) at 6000 rpm. The resulting temperature profiles clearly showed the traverse of the flame front and were qualitatively consistent with in-cylinder pressure, engine speed, and delivery ratio. The temperature measurements were compared to aggregate in-cylinder temperatures calculated using the ideal gas model using measured in-cylinder pressure and trapped mass calculated at exact port closure as inputs. The calculation was sensitive to the trapped mass determination, and the results show that using the ideal gas model for in-cylinder temperature calculations in heat flux models may fail to capture trends in actual in-cylinder temperature with changing engine operating conditions.

References

1.
Chang
,
J.
,
Güralp
,
O.
,
Filipi
,
Z.
,
Kuo
,
D. A.-W.
,
Najt
,
P.
, and
Rask
,
R.
,
2004
, “
New Heat Transfer Correlation for an HCCI Engine Derived From Measurements of Instantaneous Surface Heat Flux
,”
SAE
Paper No. 2004-01-2996.10.4271/2004-01-2996
2.
Menon
,
S.
, and
Cadou
,
C.
,
2013
, “
Scaling of Miniature Piston-Engine Performance Part 2: Energy Losses
,”
J. Propul. Power
,
29
(
4
), pp.
788
799
.10.2514/1.B34639
3.
Menon
,
S.
,
2010
, “
The Scaling of Performance and Losses in Miniature Internal Combustion Engines
,”
Ph.D. thesis
, Aeronautical Engineering, Department of Aeronautical Engineering, University of Maryland, College Park, MD.https://drum.lib.umd.edu/handle/1903/11180
4.
Gegg
,
T.
,
Kölmel
,
A.
, and
Beck
,
K. W.
,
2010
, “
Combustion Analysis on Small Two-Stroke SI-Engines for Handheld Power Tools
,”
SAE
Paper No. 2010-32-0062.10.4271/2010-32-0062
5.
Zhao
,
H.
, and
Ladommatos
,
N.
,
2001
, “
Engine Combustion and Diagnostics
,”
Warrendale
, Vol.
58
,
Society of Automotive Engineers
,
Warrendale, PA
, pp.
575
644
.
6.
Beck, K., Schreer, K., Bernhardt, S., Spicher, U., Rosskamp, H., and Gegg, T., 2006, "Application of Multifiber Optics in Handheld Power Tools With High Speed Two-Stroke Gasoline Engines,"
SAE
Paper No. 2006-32-0060.10.4271/2006-32-0060
7.
Longdill, S., Raine, R., Blanchard, G., and Wright, W., 2001, “Optical Combustion Measurements of a High Performance Two-Stroke Engine,”
SAE
Paper No. 2001-01-1092.10.4271/2001-01-1092
8.
Menon
,
S.
, and
Cadou
,
C.
,
2013
, “
Investigation of Combustion Processes in Miniature Internal Combustion Engines
,”
Combust. Sci. Technol.
,
185
(
11
), pp.
1667
1695
.10.1080/00102202.2013.829720
9.
Ito
,
N.
,
Iijima
,
A.
,
Terashima
,
A.
,
Sahara
,
J.
,
Shimada
,
T.
,
Yamada
,
M.
, Asai, T., Tanabe, M., Toshida, K., and Shoji, H.,
2014
, “
A Study of HCCI Combustion Assisted by a Streamer Discharge Based on Visualization of the Entire Bore Area
,”
SAE
Paper No. 2014-31-0001.10.4271/2014-31-0001
10.
Beck
,
K. W.
,
Heidenreich
,
T.
,
Busch
,
S.
,
Spicher
,
U.
,
Gegg
,
T.
, and
Kölmel
,
A.
,
2009
, “
Spectroscopic Measurements in Small Two-Stroke Engines
,”
SAE
Paper No. 2009-32-0030.10.4271/2009-32-0030
11.
Hill
,
J. C.
, and
Majkowski
,
R. F.
,
1980
, “
Time-Resolved Measurement of Vehicle Sulfate and Methane Emissions With Tunable Diode Lasers
,”
SAE
Paper No. 800510.10.4271/800510
12.
Chen
,
S. K.
,
Beck
,
N. J.
,
Uyehara
,
O. A.
, and
Myers
,
P. S.
,
1954
, “
Compression and End-Gas Temperatures From Iodine Absorption Spectra
,”
SAE
Trans., 62, pp.
503
513
.https://www.jstor.org/stable/44547342
13.
Ma
,
W.
,
Leviticus
,
L. I.
, and
Ullman
,
F. G.
,
1994
, “
On-Line Measurement of Formaldehyde in Tailpipe Emissions by Tunable Diode Laser Spectroscopy
,”
SAE
Paper No. 941702. 10.4271/941702
14.
Thiel
,
W.
,
Hübner
,
W.
,
Grisar
,
R.
,
Riedel
,
W. J.
, and
Wolf
,
H.
,
1994
, “
Dynamic Laser Analysis of Exhaust Gas
,”
SAE
Paper No. 940825. 10.4271/940825
15.
Lenaers
,
G.
, and
Van Poppel
,
M.
,
2005
, “
A Tunable Diode Laser Measurement Technique for the On-Board Evaluation of Tail Pipe Ammonia Emissions
,”
SAE
Paper No. 2005-24-018. 10.4271/2005-24-018
16.
Pisano
,
J. T.
,
Sauer
,
C.
,
Durbin
,
T.
, and
Mackay
,
G.
, “
Measurement of Low Concentration NH3 in Diesel Exhaust Using Tunable Diode Laser Adsorption Spectroscopy (TDLAS)
,”
SAE
Paper No. 2009-01-1519. 10.4271/2009-01-1519
17.
Ausserer
,
J. K.
,
Horn
,
K. P.
,
Polanka
,
M. D.
,
Litke
,
P. J.
, and
Grinstead
,
K. D.
,
2015
, “
Quantification of Short-Circuiting and Trapping Efficiency in a Small Internal Combustion Engine by GC-MS and GC-TCD
,”
SAE
Paper No. 2015-32-0716.10.4271/2015-32-0716
18.
Ausserer
,
J. K.
,
Polanka
,
M. D.
,
Litke
,
P. J.
, and
Baranski
,
J. A.
,
2016
, “
Mapping of Fuel Anti-Knock Requirements for Small Remotely Piloted Aircraft Engines
,”
SAE
Paper No. 2016-32-0116. 10.4271/2016-32-0116
19.
Ausserer
,
J. K.
,
Polanka
,
M. D.
,
Litke
,
P. J.
, and
Baranski
,
J. A.
,
2018
, “
Engine-Control Impact on Energy Balances for Two-Stroke Engines for 10–25 kg Remotely Piloted Aircraft
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), p.
112803
.10.1115/1.4039466
20.
Horn
,
K. P.
,
Ausserer
,
J. K.
,
Polanka
,
M. D.
,
Litke
,
P. J.
, and
Grinstead
,
K. D.
,
2015
, “
Dynamic Friction Measurements on a Small Engine Test Bench
,”
AIAA
Paper No. 2015-1473. 10.2514/6.2015-1473
21.
Baranski
,
J.
,
2013
, “
Experimental Investigation of Octane Requirement in a Turbocharged Spark-Ignition Engine
,”
M.S. thesis
, Mechanical Engineering, School of Engineering, University of Dayton, Dayton, OH. https://etd.ohiolink.edu/!etd.send_file?accession=dayton1375262182&disposition=inline
22.
Deutsch
,
M. J.
,
Ausserer
,
J. K.
,
Polanka
,
M. D.
,
Litke
,
P. J.
,
Caswell
,
A. W.
, and
Grinstead
,
K. D.
, “
Gas Temperature Measurement Using FTIR Spectroscopy in Small Internal Combustion Engines
,”
AIAA
Paper No. 2016-0765. 10.2514/6.2016-0765
23.
Deutsch
,
M. J.
,
2016
, “
Spectroscopic Measurement of Gas Temperature in Small Internal Combustion Engines
,”
M.S. thesis
, Aeronautical Engineering, Department of Aeronautics and Astronautics, Air Force Institute of Technology, WPAFB, OH.https://scholar.afit.edu/etd/428/
24.
Rein
,
K.
,
Roy
,
S.
,
Sanders
,
S. T.
,
Caswell
,
A. W.
,
Schauer
,
F. R.
, and
Gord
,
J. R.
,
2017
, “
Measurements of Gas Temperatures at 100-kHz Within the Annulus of a Rotating Detonation Engine
,”
Appl. Phys.
,
123
(
3
), p.
88
.10.1007/s00340-017-6647-5
25.
Kranendonk
,
L. A.
,
Caswell
,
A. W.
, and
Sanders
,
S. T.
,
2007
, “
Robust Method for Calculating Temperature, Pressure, and Absorber Mole Fraction From Broadband Spectra
,”
Appl. Opt.
,
46
(
19
), pp.
4117
4124
.10.1364/AO.46.004117
26.
Rothman
,
L. S.
,
Gordon
,
I. E.
,
Babikov
,
Y.
,
Barbe
,
A.
,
Chris Benner
,
D.
,
Bernath
,
P. F.
,
Birk
,
M.
,
Bizzocchi
,
L.
,
Boudon
,
V.
,
Brown
,
L. R.
,
Campargue
,
A.
,
Chance
,
K.
,
Cohen
,
E. A.
,
Coudert
,
L. H.
,
Devi
,
V. M.
,
Drouin
,
B. J.
,
Fayt
,
A.
,
Flaud
,
J.-M.
,
Gamache
,
R. R.
,
Harrison
,
J. J.
,
Hartmann
,
J.-M.
,
Hill
,
C.
,
Hodges
,
J. T.
,
Jacquemart
,
D.
,
Jolly
,
A.
,
Lamouroux
,
J.
,
Le Roy
,
R. J.
,
Li
,
G.
,
Long
,
D. A.
,
Lyulin
,
O. M.
,
Mackie
,
C. J.
,
Massie
,
S. T.
,
Mikhailenko
,
S.
,
Müller
,
H.
,
Naumenko
,
O. V.
,
Nikitin
,
A. V.
,
Orphal
,
J.
,
Perevalov
,
V.
,
Perrin
,
A.
,
Polovtseva
,
E. R.
,
Richard
,
C.
,
Smith
,
M.
,
Starikova
,
E.
,
Sung
,
K.
,
Tashkun
,
S.
,
Tennyson
,
J.
,
Toon
,
G. C
.,
Tyuterev
,
V.
, and
Wagner
,
G.
,
2013
, “
The HITRAN2012 Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
, 130, pp.
4
50
.10.1016/j.jqsrt.2013.07.002
27.
Schulze
,
G.
,
Jirasek
,
A.
,
Yu
,
M. M. L.
,
Lim
,
A.
,
Turner
,
R. F. B.
, and
Blades
,
M. W.
,
2005
, “
Investigation of Selected Baseline Removal Techniques as Candidates for Automated Implementation
,”
Appl. Spectrosc.
,
59
(
5
), pp.
545
574
.10.1366/0003702053945985
28.
Olivero
,
J. J.
, and
Longbothum
,
R. L.
,
1977
, “
Empirical Fits to the Voigt Line Width: A Brief Review
,”
J. Quant. Spectrosc. Radiat. Transfer
,
17
(
2
), pp.
233
236
.10.1016/0022-4073(77)90161-3
29.
Rothman
,
L. S.
,
Gordon
,
I. E.
,
Barber
,
R. J.
,
Dothe
,
H.
,
Gamache
,
R. R.
,
Goldman
,
A.
,
Perevalov
,
V. I.
,
Tashkun
,
S. A.
, and
Tennyson
,
J.
,
2010
, “
HITEMP, the High-Temperature Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
, 111(
15
), pp.
2139
2150
.10.1016/j.jqsrt.2010.05.001
30.
Ausserer
,
J. K.
,
Rowton
,
A.
,
Litke
,
P.
,
Grinstead
,
K.
, and
Polanka
,
M.
,
2014
, “
Comparison of in-Cylinder Pressure Measurement Methods in a Small Spark Ignition Engine
,”
SAE
Paper No. 2014-32-0007.10.4271/2014-32-0007
You do not currently have access to this content.