Abstract

Dry friction devices such as underplatform dampers are commonly included in turbine bladed disks designs to mitigate structural vibrations and avoid high cycle fatigue failures. The design of frictionally damped bladed disks requires adequate models to represent the friction contact. A widely used approach connects contact node pairs with normal and tangential springs and a Coulomb friction law. This simple model architecture is effective in capturing the softening behavior typically observed on frictionally damped structures subjected to increasing forcing levels. An unexpected hardening behavior was observed on the frequency response functions (FRFs) of a two-blades-plus-damper system tested by the authors in a controlled laboratory environment. The reason behind this unexpected behavior will be carefully analyzed and linked to the damper kinematics and to the dependence of contact elasticity on the contact pressure. The inadequacy of contact models with constant spring values will be discussed and alternatives will be proposed. The importance of being able to represent complex contact conditions in order to effectively predict the system dynamics is shown here using a laboratory demonstrator; however, its implications are relevant to any other case where large contact pressure variations are to be expected. The nonlinear steady-state simulations of the blades-plus-damper system will be carried out using an in-house code exploiting the multiharmonic balance method in combination with the alternating frequency time method.

References

1.
Yang
,
B. D.
, and
Menq
,
C. H.
,
1998
, “
Characterization of Contact Kinematics and Application to the Design of Wedge Dampers in Turbomachinery Blading—Part 2: Prediction of Forced Response and Experimental Verification
,”
ASME J. Eng. Gas Turbines Power
,
120
(
2
), pp.
418
423
.10.1115/1.2818139
2.
Panning
,
L.
,
Sextro
,
W.
, and
Popp
,
K.
,
2000
, “
Optimization of Interblade Friction Damper Design
,”
ASME
Paper No. 2000-GT-0541.10.1115/2000-GT-0541
3.
Panning
,
L.
,
Sextro
,
W.
, and
Popp
,
K.
,
2003
, “
Spatial Dynamics of Tuned and Mistuned Bladed Disks With Cylindrical and Wedge-Shaped Friction Dampers
,”
Int. J. Rotating Mach.
,
9
(
3
), pp.
219
228
.10.1155/S1023621X03000198
4.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2007
, “
Advanced Modeling of Underplatform Friction Dampers for Analysis of Bladed Disk Vibration
,”
ASME J. Turbomach.
,
129
(
1
), pp.
143
150
.10.1115/1.2372775
5.
Berruti
,
T.
,
Firrone
,
C.
,
Pizzolante
,
M.
, and
Gola
,
M.
,
2007
, “
Fatigue Damage Prevention on Turbine Blades: Study of Underplatform Damper Shape
,”
Key Eng. Mater.
,
347
, pp.
159
164
.10.4028/www.scientific.net/KEM.347.159
6.
Berruti
,
T.
,
2010
, “
A Test Rig for the Investigation of the Dynamic Response of a Bladed Disk With Underplatform Dampers
,”
Mech. Res. Commun.
,
37
(
6
), pp.
581
583
.10.1016/j.mechrescom.2010.07.008
7.
Sever
,
I.
,
Petrov
,
E.
, and
Ewins
,
D.
,
2008
, “
Experimental and Numerical Investigation of Rotating Bladed Disk Forced Response Using Underplatform Friction Dampers
,”
ASME J. Eng. Gas Turbines Power
,
130
(
4
), p.
042503
.10.1115/1.2903845
8.
Firrone
,
C. M.
,
Berruti
,
T. M.
, and
Gola
,
M. M.
,
2013
, “
On Force Control of an Engine Order–Type Excitation Applied to a Bladed Disk With Underplatform Dampers
,”
ASME J. Vib. Acoust.
,
135
(
4
), p.
041103
.10.1115/1.4023899
9.
Botto
,
D.
,
Gastadi
,
C.
,
Gola
,
M. M.
, and
Umer
,
M.
,
2018
, “
An Experimental Investigation of the Dynamics of a Blade With Two Under-Platform Dampers
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032504
.10.1115/1.4037865
10.
Pesaresi
,
L.
,
Salles
,
L.
,
Jones
,
A.
,
Green
,
J.
, and
Schwingshackl
,
C.
,
2017
, “
Modelling the Nonlinear Behaviour of an Underplatform Damper Test Rig for Turbine Applications
,”
Mech. Syst. Signal Process.
,
85
, pp.
662
679
.10.1016/j.ymssp.2016.09.007
11.
Šanliturk
,
K.
,
Ewins
,
D.
, and
Stanbridge
,
A.
,
2001
, “
Underplatform Dampers for Turbine Blades: Theoretical Modelling, Analysis and Comparison With Experimental Data
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
919
929
.10.1115/1.1385830
12.
Panning
,
L.
,
Popp
,
K.
,
Sextro
,
W.
,
Götting
,
F.
,
Kayser
,
A.
, and
Wolter
,
I.
,
2004
, “
Asymmetrical Underplatform Dampers in Gas Turbine Bladings: Theory and Application
,”
ASME
Paper No. GT2004-53316.10.1115/GT2004-53316
13.
Zucca
,
S.
,
Borrajo
,
J.
, and
Gola
,
M.
,
2006
, “
Forced Response of Bladed Disks in Cyclic Symmetry With Underplatform Dampers
,”
ASME
Paper No. GT2006-90785.10.1115/GT2006-90785
14.
Koh
,
K.-H.
, and
Griffin
,
J. H.
,
2007
, “
Dynamic Behavior of Spherical Friction Dampers and Its Implication to Damper Contact Stiffness
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
511
521
.10.1115/1.2436547
15.
Berruti
,
T.
,
Firrone
,
C.
, and
Gola
,
M.
,
2011
, “
A Test Rig for Noncontact Traveling Wave Excitation of a Bladed Disk With Underplatform Dampers
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), pp.
1
7
.10.1115/1.4002100
16.
Gastaldi
,
C.
,
Berruti
,
T. M.
, and
Gola
,
M. M.
,
2018
, “
Best Practices for Underplatform Damper Designers
,”
Proc. Inst. Mech. Eng., Part C
,
232
(
7
), pp.
1221
1235
.10.1177/0954406217753654
17.
Botto
,
D.
, and
Umer
,
M.
,
2018
, “
A Novel Test Rig to Investigate Under-Platform Damper Dynamics
,”
Mech. Syst. Signal Process.
,
100
, pp.
344
359
.10.1016/j.ymssp.2017.07.046
18.
Hls
,
M.
,
von Scheidt
,
L. P.
, and
Wallaschek
,
J.
,
2018
, “
Influence of Geometric Design Parameters Onto Vibratory Response and HCF Safety for Turbine Blades With Friction Damper
,”
ASME
Paper No. GT2018-75363.10.1115/GT2018-75363
19.
Petrov
,
E.
,
2008
, “
Explicit Finite Element Models of Friction Dampers in Forced Response Analysis of Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
022502
.10.1115/1.2772633
20.
Afzal
,
M.
,
Arteaga
,
I. L.
, and
Kari
,
L.
,
2016
, “
An Analytical Calculation of the Jacobian Matrix for 3D Friction Contact Model Applied to Turbine Blade Shroud Contact
,”
Comput. Struct.
,
177
, pp.
204
217
.10.1016/j.compstruc.2016.08.014
21.
Gastaldi
,
C.
,
Fantetti
,
A.
, and
Berruti
,
T.
,
2017
, “
Forced Response Prediction of Turbine Blades With Flexible Dampers: The Impact of Engineering Modelling Choices
,”
Appl. Sci.
,
8
(
1
), p.
34
.10.3390/app8010034
22.
Griffin
,
J.
,
1980
, “
Friction Damping of Resonant Stresses in Gas Turbine Engine Airfoils
,”
J. Eng. Power
,
102
(
2
), pp.
329
333
.10.1115/1.3230256
23.
Yang
,
B.
, and
Menq
,
C.
,
1998
, “
Characterization of 3D Contact Kinematics and Prediction of Resonant Response of Structures Having 3D Frictional Constraint
,”
J Sound Vib.
,
217
(
5
), pp.
909
925
.10.1006/jsvi.1998.1802
24.
Schwingshackl
,
C.
,
Petrov
,
E.
, and
Ewins
,
D.
,
2012
, “
Measured and Estimated Friction Interface Parameters in a Nonlinear Dynamic Analysis
,”
Mech. Syst. Signal Process.
,
28
, pp.
574
584
.10.1016/j.ymssp.2011.10.005
25.
Botto
,
D.
,
Lavella
,
M.
, and
Gola
,
M. M.
,
2012
, “
Measurement of Contact Parameters of Flat on Flat Contact Surfaces at High Temperature
,”
ASME
Paper No. GT2012-69677.10.1115/GT2012-69677
26.
Gastaldi
,
C.
,
Berruti
,
T. M.
, and
Gola
,
M. M.
,
2020
, “
A Novel Test Rig for Friction Parameters Measurement on Underplatform Dampers
,”
Int. J. Solids Struct.
,
185–186
, pp.
170
181
.10.1016/j.ijsolstr.2019.08.030
27.
Zucca
,
S.
,
Firrone
,
C. M.
, and
Gola
,
M.
,
2013
, “
Modeling Underplatform Dampers for Turbine Blades: A Refined Approach in the Frequency Domain
,”
J. Vib. Control
,
19
(
7
), pp.
1087
1102
.10.1177/1077546312440809
28.
Zucca
,
S.
,
Botto
,
D.
, and
Gola
,
M.
,
2008
, “
Range of Variability in the Dynamics of Semi-Cylindrical Friction Dampers for Turbine Blades
,”
ASME
Paper No. GT2008-51058.10.1115/GT2008-51058
29.
Gola
,
M.
, and
Gastaldi
,
C.
,
2014
, “
Understanding Complexities in Underplatform Damper Mechanics
,”
ASME
Paper No. GT2014-25240.10.1115/GT2014-25240
30.
Firrone
,
C. M.
, and
Zucca
,
S.
,
2009
, “
Underplatform Dampers for Turbine Blades: The Effect of Damper Static Balance on the Blade Dynamics
,”
Mech. Res. Commun.
,
36
(
4
), pp.
515
522
.10.1016/j.mechrescom.2009.01.002
31.
Firrone
,
C.
,
2009
, “
Measurement of the Kinematics of Two Underplatform Dampers With Different Geometry and Comparison With Numerical Simulation
,”
J. Sound Vib.
,
323
(
1–2
), pp.
313
333
.10.1016/j.jsv.2008.12.019
32.
Szwedowicz
,
J.
,
Kissel
,
M.
,
Ravindra
,
B.
, and
Kellerer
,
R.
,
2001
, “
Estimation of Contact Stiffness and Its Role in the Design of a Friction Damper
,”
ASME
Paper No. 2001-GT-0290.10.1115/2001-GT-0290
33.
Sextro
,
W.
,
Popp
,
K.
, and
Wolter
,
I.
,
1997
, “
Improved Reliability of Bladed Disks Due to Friction Dampers
,”
ASME
Paper No. 97-GT-189.10.1115/97-GT-189
34.
Bessone
,
A.
,
Toso
,
F.
, and
Berruti
,
T.
,
2015
, “
Investigation on the Dynamic Response of Blades With Asymmetric Under Platform Dampers
,”
ASME
Paper No. GT2015-42597.10.1115/GT2015-42597
35.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
36.
Harris
,
T.
, and
Kotzalas
,
M.
,
2006
,
Rolling Bearing Analysis
, 5th ed.,
CRC Press
,
Boca Raton, FL
.
37.
Krack
,
M.
, and
Gross
,
J.
,
2019
,
Harmonic Balance for Nonlinear Vibration Problems
,
Springer Nature
,
Cham, Switzerland
.
38.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
.10.1007/s11831-016-9183-2
39.
Gastaldi
,
C.
,
2017
, “
Vibration Control and Mitigation in Turbomachinery
,” Ph.D. thesis,
Politecnico di Torino
,
Torino, Italy
.
40.
Gastaldi
,
C.
,
Zucca
,
S.
, and
Epureanu
,
B. I.
,
2016
, “
Jacobian Projection for the Reduction of Friction Induced Nonlinearities
,”
Proceedings of ISMA 2016 - International Conference on Noise and Vibration Engineering and USD2016 - International Conference on Uncertainty in Structural Dynamics 2016
, Leuven; Belgium, Sept. 19–Sept. 21, pp.
3491
3505
.http://past.isma-isaac.be/downloads/isma2016/papers/isma2016_0314.pdf
41.
Gastaldi
,
C. B. T.
,
2018
, “
Competitive Time Marching Solution Methods for Systems With Friction-Induced Nonlinearities
,”
Appl. Sci.
,
8
(
2
), p.
291
.10.3390/app8020291
You do not currently have access to this content.