Abstract

A probabilistic model for quantifying the number of load cycles for nucleation of forging flaws into a crack has been developed. The model correlates low cycle fatigue (LCF) data, ultrasonic testing (UT) indication data, flaw morphology and type with the nucleation process. The nucleation model is based on a probabilistic LCF model applied to finite element analyses (FEA) of flaw geometries. The model includes statistical size and notch effects. In order to calibrate the model, we conducted experiments involving specimens that include forging flaws. The specimens were machined out from heavy duty steel rotor disks for the energy sector. The large disks, including ultrasonic indications on the millimeter scale, were cut into smaller segments in order to efficiently machine specimens including manufacturing related forging flaws. We conducted cyclic loading experiments at a variety of temperatures and high stresses in order to capture realistic engine operating conditions for flaws as they occur in service. This newly developed model can be incorporated into an existing probabilistic fracture mechanics framework and enables a reliable risk quantification allowing to support customer needs for more flexible operational profiles due to the emergence of renewable energy sources.

References

1.
Amann
,
C.
,
2017
, “
Probabilistic Fracture Mechanics of Forged Rotor Disks
,”
Ph.D. thesis
, KIT,
Karlsruhe (Germany)
.https://publikationen.bibliothek.kit.edu/1000071647/4319247
2.
U.S. Department of Transportation Federal Aviation Administration
,
2017
, “AC 33.14-1—Damage Tolerance for High Energy Turbine Engine Rotors: U. S. D. of T. F. A,” U.S. Department of Transportation Federal Aviation Administration, Washington, DC.
3.
Craig McClung
,
R.
,
Lee
,
Y.-D.
,
Enright
,
M. P.
, and
Liang
,
W.
,
2014
, “
New Methods for Automated Fatigue Crack Growth and Reliability Analysis
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
185
.10.1115/1.4026140
4.
Enright
,
M. P.
, and
McClung
,
R. C.
,
2011
, “
A Probabilistic Framework for Gas Turbine Engine Materials With Multiple Types of Anomalies
,”
ASME J. Eng. Gas Turbines Power
,
133
(
8
), p.
355
.10.1115/1.4002675
5.
Enright
,
M. P.
,
McClung
,
R. C.
,
Liang
,
W.
,
Lee
,
Y.-D.
,
Moody
,
J. P.
, and
Fitch
,
S.
,
2012
, “
A Tool for Probabilistic Damage Tolerance of Hole Features in Turbine Engine Rotors
,”
ASME
Paper No. GT2012-69968.10.1115/GT2012-69968
6.
Enright
,
M. P.
,
Moody
,
J. P.
, and
Sobotka
,
J. C.
,
2016
, “
Optimal Automated Fracture Risk Assessment of 3D Gas Turbine Engine Components
,”
ASME
Paper No. GT2016-58091.10.1115/GT2016-58091
7.
Kadau
,
K.
,
Gravett
,
P. W.
, and
Amann
,
C.
,
2018
, “
Probabilistic Fracture Mechanics for Heavy-Duty Gas Turbine Rotor Forgings
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
062503
.10.1115/1.4038524
8.
Amann
,
C.
, and
Kadau
,
K.
,
2016
, “
Numerically Efficient Modified Runge–Kutta Solver for Fatigue Crack Growth Analysis
,”
Eng. Fract. Mech.
,
161
, pp.
55
62
.10.1016/j.engfracmech.2016.03.021
9.
Amann
,
C.
,
Gravett
,
P. W.
, and
Kadau
,
K.
,
2016
, “
Method and System for Probabilistic Fatigue Crack Life Estimation
,” US Patent 9,280,620 B2.
10.
Romano
,
S.
,
Miccoli
,
S.
, and
Beretta
,
S.
,
2019
, “
A New FE Post-Processor for Probabilistic Fatigue Assessment in the Presence of Defects and Its Application to AM Parts
,”
Int. J. Fatigue
,
125
, pp.
324
341
.10.1016/j.ijfatigue.2019.04.008
11.
Berger
,
C.
,
Mayer
,
K. H.
,
Oberparleiter
,
W.
, and
Scarlin
,
R. B.
,
1984
, “
Initiation of Fatigue Cracks at Non-Metallic Inclusions in Large Forgings
,”
Fracture
,
84
, pp.
2107
2116
.10.1016/B978-1-4832-8440-8.50213-1
12.
Scarlin
,
R. B.
,
Berger
,
C.
,
Mayer
,
K. H.
, and
Oberparleiter
,
W.
,
1984
, “
Fatigue Crack Initiation and Propagation From Inclusions in Steel Forgings
,”
European Conference on Fracture (ECF5)
, Lisabon, Portugal, Sept. 17–21, pp.
99
114
.
13.
Varfolomeev
,
I.
,
Moroz
,
S.
,
Siegele
,
D.
,
Kadau
,
K.
, and
Amann
,
C.
,
2017
, “
Study on Fatigue Crack Initiation and Propagation From Forging Defects
,”
Procedia Struct. Integr.
,
7
, pp.
359
367
.10.1016/j.prostr.2017.11.100
14.
Radaelli
,
F.
,
Kadau
,
K.
,
Amann
,
C.
, and
Gumbsch
,
P.
,
2019
, “
Probabilistic Fracture Mechanics Framework Including Crack Nucleation of Rotor Forging Flaws
,”
ASME
Paper No. GT2019-90418.10.1115/GT2019-90418
15.
Paspulati
,
A. K.
,
Veluru
,
K.
,
Akki
,
K.
,
Khattar
,
R.
,
Bosu
,
S.
, and
Narasimhachary
,
S.
,
2018
, “
LCF Initiated—HCF Propagated Crack Life Estimation of Gas Turbine Bolts
,”
ASME
Paper No. GT2018-76968.10.1115/GT2018-76968
16.
Mooshofer
,
H.
,
Schörner
,
K.
,
Nespoli
,
N.
,
Vrana
,
J.
, and
Kolk
,
K.
,
2019
, “
Validierung von SAFT für die Herstellungsprüfung von Turbinenscheiben
,” DACH-Jahrestagung, Friedrichshafen, Germany, May 27–29, No. 333610368.
17.
Schörner
,
K.
,
Mooshofer
,
H.
,
Zimmer
,
A.
,
Vrana
,
J.
, and
Kolk
,
K.
,
2019
, “
Praxiserfahrungen beim Einsatz der SAFT- Software von Siemens
,” DACH-Jahrestagung, Friedrichshafen, Germany, May 27–29, No. 333610426.
18.
Vrana
,
J.
,
Zimmer
,
A.
,
Schörner
,
K.
,
Mooshofer
,
H.
, and
Kolk
,
K.
,
2019
, “
Erfahrungen bei der Einführung der SAFT Prüfung in die Serienfertigung großer Schmiedeteile
,” DACH-Jahrestagung, Friedrichshafen, Germany, May 27–29, No. 333610275.
19.
Vrana
,
J.
,
Schörner
,
K.
,
Mooshofer
,
H.
,
Kolk
,
K.
,
Zimmer
,
A.
, and
Fendt
,
K.
,
2018
, “
Ultrasonic Computed Tomography – Pushing the Boundaries of the Ultrasonic Inspection of Forgings
,”
Steel Res. Int.
,
89
(
4
), p.
1700448
10.1002/srin.201700448
20.
Soille
,
P.
, and
Vincent
,
L. M.
, eds.,
1990
, “
Determining Watersheds in Digital Pictures Via Flooding Simulations
,”
SPIE
Paper No. SPIE 1360.10.1117/12.24211
21.
Kun
,
F.
, and
Herrmann
,
H. J.
,
1996
, “
A Study of Fragmentation Processes Using a Discrete Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
138
(
1–4
), pp.
3
18
.10.1016/S0045-7825(96)01012-2
22.
Domokos
,
G.
,
Kun
,
F.
,
Sipos
,
A. Á.
, and
Szabó
,
T.
,
2015
, “
Universality of Fragment Shapes
,”
Sci. Rep.
,
5
(
1
), p.
9147
.10.1038/srep09147
23.
Schmitz
,
S.
,
Seibel
,
T.
,
Beck
,
T.
,
Rollmann
,
G.
,
Krause
,
R.
, and
Gottschalk
,
H.
,
2013
, “
A Probabilistic Model for LCF
,”
Comput. Mater. Sci.
,
79
, pp.
584
590
.10.1016/j.commatsci.2013.07.015
24.
Glinka
,
G.
,
1985
, “
Energy Density Approach to Calculation of Inelastic Strain-Stress Near Notches and Cracks
,”
Eng. Fract. Mech.
,
22
(
3
), pp.
485
508
.10.1016/0013-7944(85)90148-1
25.
Knop
,
M.
,
2000
, “
On the Glinka and Neuber Methods for Calculating Notch Tip Strains Under Cyclic Load Spectra
,”
Int. J. Fatigue
,
22
(
9
), pp.
743
755
.10.1016/S0142-1123(00)00061-X
26.
Molski
,
K.
, and
Glinka
,
G.
,
1981
, “
A Method of Elastic-Plastic Stress and Strain Calculation at a Notch Root
,”
Mater. Sci. Eng.
,
50
(
1
), pp.
93
100
.10.1016/0025-5416(81)90089-6
27.
Schmitz
,
S.
,
2014
, “
A Local and Probabilistic Model for Low-Cycle Fatigue: New Aspects of Structural Analysis
,”
Ph.D. thesis
,
Università della Svizzera Italiana
,
Lugano, Switzerland
.https://www.semanticscholar.org/paper/A-local-and-probabilistic-model-for-low-cycle-new-Schmitz/b1442e3ad1ab3370d31a87d41a0732641261b48d
28.
Schmitz
,
S.
,
Gottschalk
,
H.
,
Rollmann
,
G.
, and
Krause
,
R.
,
2013
, “
Risk Estimation for LCF Crack Initiation
,”
ASME
Paper No. GT2013-94899.10.1115/GT2013-94899
29.
Jestrich
,
H. A.
,
Prestel
,
W.
,
Heinrich
,
D.
, and
Schmalenbeck
,
W.
,
1986
, “
Die Bedeutung der Ersatzreflektorgröße für die Bruchmechanik, untersucht an schweren Sehmiedestücken für Turbomaschinen
,”
DGZfP
, Münster, Germany, May, Vol. 29, pp.
13
16
.
30.
Kern
,
T.-U.
,
Ewald
,
J.
, and
Maile
,
K.
,
1998
, “
Evaluation of NDT-Signals for Use in the Fracture Mechanics Safety Analysis
,”
Mater. High Temp.
,
15
(
2
), pp.
107
110
.10.1080/09603409.1998.11689587
You do not currently have access to this content.