Abstract

The aim of this work is to present the development and application of a measurement technique that allows to record internal heat transfer features of real components. In order to apply this method, based on similar approaches proposed in previous literature works, the component is initially heated up to a steady temperature, then a thermal transient is induced by injecting cool air in the internal cooling system. During this process, the external temperature evolution is recorded by means of an infrared (IR) camera. Experimental data are then exploited to run a numerical procedure, based on a series of transient finite element analyses of the component. In particular, the test duration is divided into an appropriate number of steps and, for each of them, the heat flux on internal surfaces is iteratively updated as to target the measured external temperature distribution. Heat flux and internal temperature data for all the time steps are eventually employed in order to evaluate the convective heat transfer coefficient via linear regression. This technique has been successfully tested on a cooled high-pressure vane of a Baker Hughes heavy-duty gas turbine, which was realized thanks to the development of a dedicated test rig at the University of Florence, Italy. The obtained results provide sufficiently detailed heat transfer distributions in addition to allowing to appreciate the effect of different coolant mass flow rates. The methodology is also capable of identifying defects, which is demonstrated by inducing controlled faults in the component.

References

1.
von Wolfersdorf
,
J.
, and
Weigand
,
B.
, “
Turbine Blade Internal Cooling—Selected Experimental Approaches
,”
Internal Cooling in Turbomachinery—VKI LS 2010-05
,
F.
Coletti
and
T.
Arts
, eds., Rhode-St-Genese, Belgium.
2.
Bantel
,
T. E.
, and
Mack
,
D. C.
,
1987
, “
Cooling Hole Inspection
,” Patent No. US4644162A.
3.
Daniels
,
A.
,
1996
, “
Nondestructive Pulsed Infrared Quantitative Evaluation of Metals
,”
Proc. SPIE
,
2766
, pp.
185
201
.10.1117/12.235375
4.
Bantel
,
T. E.
,
1992
, “
Apparatus and Method for Inspecting Cooling Holes
,” Patent No. US5111046A.
5.
Carl
,
V.
,
Becker
,
E.
, and
Sperling
,
A.
,
1998
, “
Thermography Inspection System for Gas Turbine Blades
,”
Seventh European Conference on Non-Destructive Testing
, Copenhagen, Denmark, May 26–29, pp.
2658
2665
.https://www.ndt.net/abstract/ecndt98/408.htm
6.
Stiglich
,
J. J.
,
Bishop
,
C. C.
,
Daleo
,
J. A.
,
Boone
,
D. A.
, and
Eelkema
,
T. E.
,
1998
, “
The Thermal Inertia Analysis Technique in Gas Turbine Component Reliability Assessment
,”
ASM Gas Turbine Materials Technology Conference
, Rosemont, IL, Oct. 12–15, pp.
138
144
.
7.
Nirmalan
,
N. V.
,
Bunker
,
R. S.
, and
Hedlund
,
C. R.
,
2003
, “
The Measurement of Full-Surface Internal Heat Transfer Coefficients for Turbine Airfoils Using a Nondestructive Thermal Inertia Technique
,”
ASME J. Turbomach.
,
125
(
1
), pp.
83
89
.10.1115/1.1515798
8.
Bunker
,
R. S.
,
Osgood
,
S. J.
, and
Nirmalan
,
N. V.
,
2009
, “
The Determination of In-Situ Film Hole Flow Rates Using a Transient Thermal Inertia Method
,”
ASME
Paper No. GT2003-38610.10.1115/GT2003-38610
9.
Heidrich
,
P.
,
von Wolfersdorf
,
J.
, and
Schnieder
,
M.
,
2009
, “
Experimental Study of Internal Heat Transfer Coefficients in a Rectangular, Ribbed Channel Using a Non-Invasive, Non-Destructive, Transient Inverse Method
,”
ASME
Paper No. GT2008-50297.10.1115/GT2008-50297
10.
Egger
,
C.
,
von Wolfersdorf
,
J.
, and
Schnieder
,
M.
,
2013
, “
Heat Transfer Measurements in an Internal Cooling System Using a Transient Technique With Infrared Thermography
,”
ASME
Paper No. GT2012-69160.10.1115/GT2012-69160
11.
Christensen
,
L. E.
, and
Mathison
,
R. M.
,
2018
, “
Measurement of Heat Transfer Inside a Channel Using External Infrared Thermography
,”
AIAA
Paper No. 2018-4430.10.2514/6.2018-4430
12.
Carlomagno
,
G. M.
, and
Cardone
,
G.
,
2010
, “
Infrared Thermography for Convective Heat Transfer Measurements
,”
Exp. Fluids
,
49
(
6
), pp.
1187
1218
.10.1007/s00348-010-0912-2
13.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
Hoboken, NJ
.
14.
Rogers
,
N.
, et al.,
2017
, “
Effects of Double Wall Cooling Configuration and Conditions on Performance of Full-Coverage Effusion Cooling
,”
ASME J. Turbomach.
,
139
(
5
), p.
051009
.10.1115/1.4035277
15.
Chyu
,
M. K.
,
Hsing
,
Y. C.
,
Shih
,
T. I.-P.
, and
Natarajan
,
V.
,
1999
, “
Heat Transfer Contributions of Pins and Endwall in Pin-Fin Arrays: Effects of Thermal Boundary Condition Modeling
,”
ASME J. Turbomach.
,
121
(
2
), pp.
257
263
.10.1115/1.2841309
16.
Chyu
,
M. K.
,
Siw
,
S. C.
, and
Moon
,
H. K.
,
2010
, “
Effects of Height-to-Diameter Ratio of Pin Element on Heat Transfer From Staggered Pin-Fin Arrays
,”
ASME
Paper No. GT2009-59814.10.1115/GT2009-59814
17.
VanFossen
,
G. J.
,
1982
, “
Heat-Transfer Coefficients for Staggered Arrays of Short Pin Fins
,”
ASME J. Eng. Power
,
104
(
2
), pp.
268
274
.10.1115/1.3227275
18.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer-Trans. ASME
,
103
(
2
), pp.
337
342
.10.1115/1.3244463
19.
Andrei
,
L.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Winchler
,
L.
,
2014
, “
A Decoupled CHT Procedure: Application and Validation on a Gas Turbine Vane With Different Cooling Configurations
,”
Energy Procedia
,
45
, pp.
1087
1096
.10.1016/j.egypro.2014.01.114
20.
Winchler
,
L.
,
Andreini
,
A.
,
Facchini
,
B.
,
Andrei
,
L.
,
Bonini
,
A.
, and
Innocenti
,
L.
,
2018
, “
Conjugate Heat Transfer Methodology for Thermal Design and Verification of Gas Turbine Cooled Components
,”
ASME J. Turbomach.
,
140
(
12
), p.
121001
.10.1115/1.4041061
21.
Metzger
,
D. E.
,
Shepard
,
W. B.
, and
Haley
,
S. W.
,
1986
, “
Row Resolved Heat Transfer Variations in Pin-Fin Arrays Including Effects of Non-Uniform Arrays and Flow Convergence
,”
ASME
Paper No. 86-GT-132.10.1115/86-GT-132
22.
Faulkner
,
F. E.
,
1971
, “
Analytical Investigation of Chord Size and Cooling Methods on Turbine Blade Cooling Requirements
,” NASA, Cleveland, OH, Report No.
CR-120882
, pp.
189
194
.https://www.semanticscholar.org/paper/Analytical-investigation-of-chord-size-and-cooling-Faulkner/b441b796e25c25a671bae1a062e396428ce5fd19
23.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in the Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
368
.https://ui.adsabs.harvard.edu/abs/1975STIA...7522028G/abstract
24.
KinellUtriainen
,
M. E.
, and
Jaksch
,
P.
,
2014
, “
An Alternative Experimental Method for Establishing Detailed Internal Heat Transfer Coefficient Distributions of Complex Cooling Geometries Using IR Thermography
,”
ASME
Paper No. GT2014-25616.10.1115/GT2014-25616
You do not currently have access to this content.