Abstract

In this paper, a new method is introduced to model the transport of entropy waves and equivalence ratio fluctuations in turbulent flows. The model is based on the Navier–Stokes equations and includes a transport equation for a passive scalar, which may stand for entropy or equivalence ratio fluctuations. The equations are linearized around the mean turbulent fields. These serve as the input to the model in addition to a turbulent eddy viscosity, which accounts for turbulent diffusion of the perturbations. Based on these inputs, the framework is able to predict the linear response of the flow velocity and passive scalar to harmonic perturbations that are imposed at the boundaries of the computational domain. These, in this study, are fluctuations in the passive scalar and/or velocities at the inlet of a channel flow. The code is first validated against analytic results, showing very good agreement. Then, the method is applied to predict the convection, mean flow dispersion, and turbulent mixing of passive scalar fluctuations in a turbulent channel flow, which has been studied in previous work with direct numerical simulations (DNS). Results show that our code reproduces the dynamics of coherent passive scalar transport in the DNS with very high accuracy and low numerical costs. Furthermore, we demonstrate that turbulent mixing has a significant effect on the transport of the passive scalar fluctuations. Finally, we apply the method to explain experimental observations of transport of equivalence ratio fluctuations in the mixing duct of a model burner.

References

1.
Martin
,
R. J.
, and
Brown
,
N. J.
,
1990
, “
Nitrous Oxide Formation and Destruction in Lean, Premixed Combustion
,”
Combust. Flame
,
80
(
3–4
), pp.
238
255
.10.1016/0010-2180(90)90102-W
2.
Lefebvre
,
A. H.
,
1998
,
Gas Turbine Combustion
,
CRC Press
, Purdue, IN.
3.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Darabiha
,
N.
,
Hakim
,
L.
, and
Schmitt
,
T.
,
2013
, “
Advances in Combustion and Propulsion Applications
,”
Eur. J. Mech. B/Fluids
,
40
, pp.
87
106
(Fascinating Fluid Mechanics: 100-Year Anniversary of the Institute of Aerodynamics, RWTH Aachen University).10.1016/j.euromechflu.2013.01.002
4.
Docquier
,
N.
, and
Candel
,
S.
,
2002
, “
Combustion Control and Sensors: A Review
,”
Prog. Energy Combust. Sci.
,
28
(
2
), pp.
107
150
.10.1016/S0360-1285(01)00009-0
5.
Marble
,
F.
, and
Candel
,
S.
,
1977
, “
Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.10.1016/0022-460X(77)90596-X
6.
Motheau
,
E.
,
Mery
,
Y.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2013
, “
Analysis and Modeling of Entropy Modes in a Realistic Aeronautical Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
092602
.10.1115/1.4024953
7.
Hochgreb
,
S.
,
Dennis
,
D.
,
Ayranci
,
I.
,
Bainbridge
,
W.
, and
Cant
,
S.
,
2013
, “
Forced and Self-Excited Instabilities From Lean Premixed, Liquid-Fuelled Aeroengine Injectors at High Pressures and Temperatures
,”
ASME
Paper No. GT2013-95311.10.1115/GT2013-95311
8.
Goh
,
C. S.
, and
Morgans
,
A. S.
,
2013
, “
The Influence of Entropy Waves on the Thermoacoustic Stability of a Model Combustor
,”
Combust. Sci. Technol.
,
185
(
2
), pp.
249
268
.10.1080/00102202.2012.715828
9.
Bake
,
F.
,
Michel
,
U.
, and
Roehle
,
I.
,
2007
, “
Investigation of Entropy Noise in Aero-Engine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
370
376
.10.1115/1.2364193
10.
Giusti
,
A.
,
Worth
,
N. A.
,
Mastorakos
,
E.
, and
Dowling
,
A. P.
,
2017
, “
Experimental and Numerical Investigation Into the Propagation of Entropy Waves
,”
AIAA J.
,
55
(
2
), pp.
446
458
.10.2514/1.J055199
11.
Bluemner
,
R.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2019
, “
Generation and Transport of Equivalence Ratio Fluctuations in an Acoustically Forced Swirl Burner
,”
Combust. Flame
,
209
, pp.
99
116
.10.1016/j.combustflame.2019.07.007
12.
Ćosić
,
B.
,
Terhaar
,
S.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
,
2015
, “
Response of a Swirl-Stabilized Flame to Simultaneous Perturbations in Equivalence Ratio and Velocity at High Oscillation Amplitudes
,”
Combust. Flame
,
162
(
4
), pp.
1046
1062
.10.1016/j.combustflame.2014.09.025
13.
Sattelmayer
,
T.
,
2003
, “
Influence of the Combustor Aerodynamics on Combustion Instabilities From Equivalence Ratio Fluctuations
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
11
19
.10.1115/1.1365159
14.
Morgans
,
A. S.
,
Goh
,
C. S.
, and
Dahan
,
J. A.
,
2013
, “
The Dissipation and Shear Dispersion of Entropy Waves in Combustor Thermoacoustics
,”
J. Fluid Mech.
,
733
, pp. R2-1–R2-11.10.1017/jfm.2013.448
15.
Duran
,
I.
, and
Moreau
,
S.
,
2013
, “
Solution of the Quasi-One-Dimensional Linearized Euler Equations Using Flow Invariants and the Magnus Expansion
,”
J. Fluid Mech.
,
723
, pp.
190
231
.10.1017/jfm.2013.118
16.
Kaiser
,
T. L.
,
Oberleithner
,
K.
,
Selle
,
L.
, and
Poinsot
,
T.
,
2019
, “
Examining the Effect of Geometry Changes in Industrial Fuel Injection Systems on Hydrodynamic Structures With Biglobal Linear Stability Analysis
,”
ASME J Eng. Gas Turbines Power
, 142(1), p.
011024
.10.1115/1.4045018
17.
Kaiser
,
T. L.
,
Poinsot
,
T.
, and
Oberleithner
,
K.
,
2018
, “
Stability and Sensitivity Analysis of Hydrodynamic Instabilities in Industrial Swirled Injection Systems
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
051506
.10.1115/1.4038283
18.
Kaiser
,
T. L.
,
Lesshafft
,
L.
, and
Oberleithner
,
K.
,
2019
, “
Prediction of the Flow Response of a Turbulent Flame to Acoustic Pertubations Based on Mean Flow Resolvent Analysis
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111021
.10.1115/1.4044993
19.
Kuhn
,
P.
,
Kaiser
,
T. L.
,
Soria
,
J.
, and
Oberleithner
,
K.
,
2019
, “
Spectral Decomposition of the Turbulent Self-Similar Jet and Recomposition Using Linear Dynamics
,”
11th International Symposium on Turbulence and Shear Flow Phenomena
(
TSFP11
), Southampton, UK, July 30–Aug. 2.https://www.researchgate.net/publication/335796916_Spectral_decomposition_of_the_turbulent_self-similar_jet_and_recomposition_using_linear_dynamics
20.
Garnaud
,
X.
,
Lesshafft
,
L.
,
Schmid
,
P. J.
, and
Huerre
,
P.
,
2013
, “
The Preferred Mode of Incompressible Jets: Linear Frequency Response Analysis
,”
J. Fluid Mech.
,
716
, pp.
189
202
.10.1017/jfm.2012.540
21.
Hussain
,
A. K. M. F.
, and
Reynolds
,
W. C.
,
1970
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow
,”
J. Fluid Mech.
,
41
(
2
), pp.
241
258
.10.1017/S0022112070000605
22.
Crouch
,
J.
,
Garbaruk
,
A.
, and
Magidov
,
D.
,
2007
, “
Predicting the Onset of Flow Unsteadiness Based on Global Instability
,”
J. Comput. Phys.
,
224
(
2
), pp.
924
940
.10.1016/j.jcp.2006.10.035
23.
Viola
,
F.
,
Iungo
,
G.
,
Camarri
,
S.
,
Porté-Agel
,
F.
, and
Gallaire
,
F.
,
2014
, “
Prediction of the Hub Vortex Instability in a Wind Turbine Wake: Stability Analysis With Eddy-Viscosity Models Calibrated on Wind Tunnel Data
,”
J. Fluid Mech.
,
750
, p.
R1
.10.1017/jfm.2014.263
24.
Ivanova
,
E. M.
,
Noll
,
B. E.
, and
Aigner
,
M.
,
2013
, “
A Numerical Study on the Turbulent Schmidt Numbers in a Jet in Crossflow
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
011505
.10.1115/1.4007374
25.
Kaiser
,
T. L.
, and
Oberleithner
,
K.
,
2021
, “
A Global Linearized Framework for Modelling Shear Dispersion and Turbulent Diffusion of Passive Scalar Fluctuations
,”
J. Fluid Mech.
,
915
, p.
A111
.10.1017/jfm.2021.151
26.
Logg
,
A.
, and
Wells
,
G. N.
,
2010
, “
Dolfin: Automated Finite Element Computing
,”
ACM Trans. Math. Softw.
,
37
(
2
), pp.
1
28
.10.1145/1731022.1731030
27.
Rukes
,
L.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
An Assessment of Turbulence Models for Linear Hydrodynamic Stability Analysis of Strongly Swirling Jets
,”
Eur. J. Mech., B/Fluids
,
59
, pp.
205
218
.10.1016/j.euromechflu.2016.05.004
28.
Paredes
,
P.
,
Terhaar
,
S.
,
Oberleithner
,
K.
,
Theofilis
,
V.
, and
Oliver Paschereit
,
C.
,
2016
, “
Global and Local Hydrodynamic Stability Analysis as a Tool for Combustor Dynamics Modeling
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021504
.10.1115/1.4031183
29.
Oberleithner
,
K.
,
Terhaar
,
S.
,
Rukes
,
L.
, and
Oliver Paschereit
,
C.
,
2013
, “
Why Nonuniform Density Suppresses the Precessing Vortex Core
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
121506
.10.1115/1.4025130
30.
Oberleithner
,
K.
,
Schimek
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Shear Flow Instabilities in Swirl-Stabilized Combustors and Their Impact on the Amplitude Dependent Flame Response: A Linear Stability Analysis
,”
Combust. Flame
,
162
(
1
), pp.
86
99
.10.1016/j.combustflame.2014.07.012
31.
Juniper
,
M. P.
,
2012
, “
Absolute and Convective Instability in Gas Turbine Fuel Injectors
,”
ASME
Paper No. GT2012-68253.10.1115/GT2012-68253
32.
Manoharan
,
K.
,
Hansford
,
S.
,
O' Connor
,
J.
, and
Hemchandra
,
S.
,
2015
, “
Instability Mechanism in a Swirl Flow Combustor: Precession of Vortex Core and Influence of Density Gradient
,”
ASME
Paper No. GT2015-42985.10.1115/GT2015-42985
33.
Manoharan
,
K.
, and
Hemchandra
,
S.
,
2015
, “
Absolute/Convective Instability Transition in a Backward Facing Step Combustor: Fundamental Mechanism and Influence of Density Gradient
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
021501
.10.1115/1.4028206
You do not currently have access to this content.