Abstract

This work evaluated the effect of cooled exhaust gas recirculation (EGR) on fuel consumption and pollutant emissions from a diesel engine fueled with B8 (a blend of biodiesel and no. diesel 8:92% by volume), experimentally and numerically. Experiments were carried out on a diesel power generator with varying loads from 5 kW to 35 kW and 10% of cold EGR ratio. Exhaust emissions (e.g., total hydrocarbons (THCs), nitrogen oxides (NOx), carbon monoxide (CO), etc.) were measured and evaluated. The results showed mild EGR and low biodiesel content have minor impact of engine-specific fuel consumption, fuel conversion efficiency, and in-cylinder pressure. Meanwhile, the combination of EGR and biodiesel reduced THC and NOx up to 52% and 59%, which shows promising effect on overcoming the particulate matter–NOx tradeoff from diesel engine. A three-dimensional computational fluid dynamics engine model incorporated with detailed biodiesel combustion kinetics and NOx formation kinetics was validated against measured in-cylinder pressure, temperature, and engine-out nitric oxide emission from diesel engine. This valid model was then employed to investigate the in-cylinder temperature and equivalence ratio distribution that predominate NOx formation. The critical results showed that the reduction of NOx emission by EGR and biodiesel is obtained by a little reduction of the local in-cylinder temperature and, mainly, by creating comparatively rich combusting mixture, which makes the combustion path pass through lower NOx zone in the ϕ–T diagram.

References

1.
Hosseinzadeh-Bandbafha
,
H.
,
Tabatabaei
,
M.
,
Aghbashlo
,
M.
,
Khanali
,
M.
, and
Demirbas
,
A.
,
2018
, “
A Comprehensive Review on the Environmental Impacts of Diesel/Biodiesel Additives
,”
Energy Convers. Manag.
,
174
, pp.
579
614
.10.1016/j.enconman.2018.08.050
2.
Oliveira
,
A.
,
Morais
,
A. M.
,
Valente
,
O. S.
, and
Sodre
,
J. R.
,
2017
, “
Combustion, Performance and Emissions of a Diesel Power Generator With Direct Injection of B7 and Port Injection of Ethanol
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
4
), pp.
1087
1096
.10.1007/s40430-016-0667-7
3.
Balamurugan
,
T.
,
Arun
,
A.
, and
Sathishkumar
,
G. B.
,
2018
, “
Biodiesel Derived From Corn Oil – a Fuel Substitute for Diesel
,”
Renew. Sustain. Energy Rev.
,
94
, pp.
772
778
.10.1016/j.rser.2018.06.048
4.
Giakoumis
,
E. G.
, and
Sarakatsanis
,
C. K.
,
2019
, “
A Comparative Assessment of Biodiesel Cetane Number Predictive Correlations Based on Fatty Acid Composition
,”
Energies
,
12
(
3
), pp.
422
30
.10.3390/en12030422
5.
United States Environ Protection Agency
,
2002
,
A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions Draft Technical Report
, United States Environ Protection Agency, Washington, DC, Report No. 118.
6.
Graboski
,
M. S.
, and
McCormick
,
R. L.
,
1998
, “
Combustion of Fat and Vegetable Oil Derived Fuels in Diesel Engines
,”
Prog. Energy Combust. Sci.
,
24
(
2
), pp.
125
164
.10.1016/S0360-1285(97)00034-8
7.
Knothe
,
G.
,
Krahl
,
J.
, and
Van Gerpen
,
J.
,
2005
,
The Biodiesel Handbook
,
AOCS Press
, Champaign, IL.
8.
Knothe
,
G.
,
2008
, “
Designer” Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties
,”
Energy Fuels
,
22
(
2
), pp.
1358
1364
.10.1021/ef700639e
9.
Çelik
,
M.
,
2017
, “
Examining Combustion and Emission Characteristics of Cotton Methyl Ester to Which Manganese Additive Material Was Added
,”
J. Mech. Sci. Technol.
,
31
(
12
), pp.
6041
6050
.10.1007/s12206-017-1148-3
10.
Çelik
,
M.
, and
Özgören
,
Y. Ö.
,
2017
, “
The Determination of Effects of Soybean and Hazelnut Methyl Ester Addition to the Diesel Fuel on the Engine Performance and Exhaust Emissions
,”
Appl. Therm. Eng.
,
124
, pp.
124
135
.10.1016/j.applthermaleng.2017.06.008
11.
Lapuerta
,
M.
,
Armas
,
O.
, and
Rodriguezfernandez
,
J.
,
2008
, “
Effect of Biodiesel Fuels on Diesel Engine Emissions
,”
Prog. Energy Combust. Sci.
,
34
(
2
), pp.
198
223
.10.1016/j.pecs.2007.07.001
12.
Andreae
,
M.
,
Fang
,
H.
, and
Bhandary
,
K.
,
2007
, “
Biodiesel and Fuel Dilution of Engine Oil
,”
SAE
Paper No. 2007-01-4036.10.4271/2007-01-4036
13.
Zel'dovich
,
Y. B.
,
Sadovnikov
,
P. Y.
, and
Frank-Kamenetskii
,
D. A.
,
1947
,
Oxidation of Nitrogen in Combustion
,
Academy of Sciences of the USSR
,
Moscow, Russia
.
14.
Palash
,
S. M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Masum
,
B. M.
,
Sanjid
,
A.
, and
Abedin
,
M. J.
,
2013
, “
State of the Art of NOx Mitigation Technologies and Their Effect on the Performance and Emission Characteristics of Biodiesel-Fueled Compression Ignition Engines
,”
Energy Convers. Manag.
,
76
, pp.
400
420
.10.1016/j.enconman.2013.07.059
15.
Puduppakkam
,
K. V.
,
Liang
,
L.
,
Shelburn
,
A.
,
Naik
,
C. V.
,
Meeks
,
E.
, and
Bunting
,
B.
,
2010
, “
Predicting Emissions Using CFD Simulations of an E30 Gasoline Surrogate in an HCCI Engine With Detailed Chemical Kinetics
,”
SAE
Paper No. 2010-01-0362.10.4271/2010-01-0362
16.
Shin
,
B.
,
Cho
,
Y.
,
Han
,
D.
,
Song
,
S.
, and
Chun
,
K. M.
,
2011
, “
Hydrogen Effects on NOx Emissions and Brake Thermal Efficiency in a Diesel Engine Under Low-Temperature and Heavy-EGR Conditions
,”
Int. J. Hydrogen Energy
,
36
(
10
), pp.
6281
6291
.10.1016/j.ijhydene.2011.02.059
17.
Bozza
,
F.
,
De Bellis
,
V.
, and
Teodosio
,
L.
,
2016
, “
Potentials of Cooled EGR and Water Injection for Knock Resistance and Fuel Consumption Improvements of Gasoline Engines
,”
Appl. Energy
,
169
, pp.
112
125
.10.1016/j.apenergy.2016.01.129
18.
Divekar
,
P. S.
,
Chen
,
X.
,
Tjong
,
J.
, and
Zheng
,
M.
,
2016
, “
Energy Efficiency Impact of EGR on Organizing Clean Combustion in Diesel Engines
,”
Energy Convers Manag.
,
112
, pp.
369
81
.10.1016/j.enconman.2016.01.042
19.
Edara
,
G.
,
Murthy
,
Y. V. V.
,
Srinivas
,
P.
,
Nayar
,
J.
, and
Ramesh
,
M.
,
2018
, “
Effect of Cooled EGR on Modified Light Duty Diesel Engine for Combustion, Performance and Emissions Under High Pressure Split Injection Strategies
,”
Case Stud. Therm. Eng.
,
12
, pp.
188
202
.10.1016/j.csite.2018.03.004
20.
Ladommatos
,
N.
,
Abdelhalim
,
S. M.
,
Zhao
,
H.
, and
Hu
,
Z.
,
1997
, “
The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions – Part 4: Effects of Carbon Dioxide and Water Vapour
,”
J. Engines
,
106
, pp.
1844
1862
.10.4271/971660
21.
Asad
,
U.
,
Kumar
,
R.
,
Zheng
,
M.
, and
Tjong
,
J.
,
2015
, “
Ethanol-Fueled Low Temperature Combustion: A Pathway to Clean and Efficient Diesel Engine Cycles
,”
Appl. Energy
,
157
, pp.
838
850
.10.1016/j.apenergy.2015.01.057
22.
Zheng
,
Z.
,
Xia
,
M.
,
Liu
,
H.
,
Shang
,
R.
,
Ma
,
G.
, and
Yao
,
M.
,
2018
, “
Experimental Study on Combustion and Emissions of n-Butanol/Biodiesel Under Both Blended Fuel Mode and Dual Fuel RCCI Mode
,”
Fuel
,
226
, pp.
240
251
.10.1016/j.fuel.2018.03.151
23.
Jothithirumal
,
B.
, and
Jamesgunasekaran
,
E.
,
2012
, “
Combined Impact of Biodiesel and Exhaust Gas Recirculation on NOx Emissions in
,”
DI Diesel Engines. Procedia Eng.
,
38
, pp.
1457
1466
.10.1016/j.proeng.2012.06.180
24.
Muncrief
,
R. L.
,
Rooks
,
C. W.
,
Cruz
,
M.
, and
Harold
,
M. P.
,
2008
, “
Combining Biodiesel and Exhaust Gas Recirculation for Reduction in NOx and Particulate Emissions
,”
Energy Fuels
,
22
(
2
), pp.
1285
1296
.10.1021/ef700465p
25.
Huang
,
M.
,
Gowdagiri
,
S.
,
Cesari
,
X. M.
, and
Oehlschlaeger
,
M. A.
,
2016
, “
Diesel Engine CFD Simulations: Influence of Fuel Variability on Ignition Delay
,”
Fuel
,
181
, pp.
170
177
.10.1016/j.fuel.2016.04.137
26.
Kumar
,
J. T. S.
,
Sharma
,
T. K.
,
Murthy
,
K. M.
, and
Rao
,
G. A. P.
,
2018
, “
Effect of Reformed EGR on the Performance and Emissions of a Diesel Engine: A Numerical Study
,”
Alexandria Eng. J
,.
57
(
2
), pp.
517
525
.10.1016/j.aej.2017.01.008
27.
Boccardi
,
S.
,
Catapano
,
F.
,
Costa
,
M.
,
Sementa
,
P.
,
Sorge
,
U.
, and
Vaglieco
,
B. M.
,
2016
, “
Optimization of a GDI Engine Operation in the Absence of Knocking Through Numerical 1D and 3D Modeling
,”
Adv. Eng. Softw.
,
95
, pp.
38
55
.10.1016/j.advengsoft.2016.01.023
28.
Naik
,
C. V.
,
Puduppakkam
,
K.
, and
Meeks
,
E.
,
2013
, “
Simulation and Analysis of in-Cylinder Soot Formation in a Low Temperature Combustion Diesel Engine Using a Detailed Reaction Mechanism
,”
SAE Int. J. Engines
,
6
(
2
), pp.
1190
1201
.10.4271/2013-01-1565
29.
Dong
,
S.
,
Cheng
,
X.
,
Ou
,
B.
,
Liu
,
T.
, and
Wang
,
Z.
,
2016
, “
Experimental and Numerical Investigations on the Cyclic Variability of an Ethanol/Diesel Dual-Fuel Engine
,”
Fuel
186
, pp.
665
673
.10.1016/j.fuel.2016.09.027
30.
Fraioli
,
V.
,
Mancaruso
,
E.
,
Migliaccio
,
M.
, and
Vaglieco
,
B. M.
,
2014
, “
Ethanol Effect as Premixed Fuel in Dual-Fuel CI Engines: Experimental and Numerical Investigations
,”
Appl. Energy
,
119
, pp.
394
404
.10.1016/j.apenergy.2014.01.008
31.
Huang
,
Y.
,
Hong
,
G.
, and
Huang
,
R.
,
2015
, “
Numerical Investigation to the Dual-Fuel Spray Combustion Process in an Ethanol Direct Injection Plus Gasoline Port Injection (EDI+GPI) Engine
,”
Energy Convers. Manag.
,
92
, pp.
275
286
.10.1016/j.enconman.2014.12.064
32.
Cameretti
,
M. C.
,
Tuccillo
,
R.
,
Simio
,
L. D.
,
Iannaccone
,
S.
, and
Ciaravola
,
U.
,
2016
, “
A Numerical and Experimental Study of Dual Fuel Diesel Engine for Different Injection Timings
,”
Appl. Therm. Eng.
,
101
, pp.
630
638
.10.1016/j.applthermaleng.2015.12.071
33.
Das
,
S. K.
, and
Lim
,
O. T.
,
2017
, “
Spray Simulation of n-Heptane in a Constant Volume Combustion Chamber Over a Wide Range of Ambient Gas Density and Fuel Temperature
,”
Energy Procedia
,
105
, pp.
1813
1820
.10.1016/j.egypro.2017.03.526
34.
Wei
,
S.
,
Ji
,
K.
,
Leng
,
X.
,
Wang
,
F.
, and
Liu
,
X.
,
2014
, “
Numerical Simulation on Effects of Spray Angle in a Swirl Chamber Combustion System of DI (Direct Injection) Diesel Engines
,”
Energy
,
75
, pp.
289
294
.10.1016/j.energy.2014.07.076
35.
Yang
,
J.
,
Golovitchev
,
V. I.
,
Redón Lurbe
,
P.
, and
López Sánchez
,
J. J.
,
2012
, “
Chemical Kinetic Study of Nitrogen Oxides Formation Trends in Biodiesel Combustion
,”
Int. J. Chem. Eng.
,
2012,
Article ID. 898742, pp.
1
22
.10.1155/2012/898742
36.
Mardi
,
K. M.
,
Khalilarya
,
S.
, and
Nemati
,
A.
,
2014
, “
A Numerical Investigation on the Influence of EGR in a Supercharged SI Engine Fueled With Gasoline and Alternative Fuels
,”
Energy Convers. Manag.
,
83
, pp.
260
269
.10.1016/j.enconman.2014.03.031
37.
Amending Law No
. 13.033,
2014
, “Have on Biodiesel Addition Percentages on Diesel Oil to Diesel Oil Marketed on The National Territory,” accessed May 17, 2017, www.planalto.gov.br/ccivil_03/_ato2015-2018/2016/lei/L13263.htm
38.
ANP Resolution
,
2014
, Brazil's National Agency of Petroleum, Natural Gas and Biofuels, ANP Resolution No. 45/2014.
39.
Kong
,
S. C.
, and
Reitz
,
R. D.
,
2002
, “
Application of Detailed Chemistry and CFD for Predicting Direct Injection HCCI Engine Combustion and Emissions
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
663
669
.10.1016/S1540-7489(02)80085-2
40.
ANSYS
,
2017
,
FORTE Theory Manual, Release 18.1
,
ANSYS
, Canonsburg, PA.
41.
Golovitchev
,
V. I.
,
Montorsi
,
L.
, and
Denbratt
,
I.
,
2007
, “
Numerical Evaluation of a New Strategy of Emissions Reduction by Urea Direct Injection for Heavy Duty Diesel Engines
,”
Eng. Appl. Comput. Fluid Mech.
,
1
(
3
), pp.
189
206
.10.1080/19942060.2007.11015192
42.
Gustavsson
,
J.
, and
Golovitchev
,
V. I.
,
2003
, “
Spray Combustion Simulation Based on Detailed Chemistry Approach for Diesel Fuel Surrogate Model
,”
SAE
Paper No. 2003-01-1848.10.4271/2003-01-1848
43.
Golovitchev
,
V. I.
, and
Yang
,
J.
,
2009
, “
Construction of Combustion Models for Rapeseed Methyl Ester Bio-Diesel Fuel for Internal Combustion Engine Applications
,”
Biotechnol. Adv.
,
27
(
5
), pp.
641
655
.10.1016/j.biotechadv.2009.04.024
44.
Yang
,
J.
,
Golovitchev
,
V. I.
,
Naik
,
C. V.
, and
Meeks
,
E.
,
2013
, “
Comparative Study of Diesel Oil and Biodiesel Spray Combustion Based on Detailed Chemical Mechanisms
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
0314018
.10.1115/1.4025724
45.
Konnov
,
A. A.
,
2009
, “
Implementation of the NCN Pathway of prompt-NO Formation in the Detailed Reaction Mechanism
,”
Combust. Flame
,
156
(
11
), pp.
2093
2105
.10.1016/j.combustflame.2009.03.016
46.
Battistoni
,
M.
,
Mariani
,
F.
,
Risi
,
F.
, and
Poggiani
,
C.
,
2015
, “
Combustion CFD Modeling of a Spark Ignited Optical Access Engine Fueled With Gasoline and Ethanol
,”
Energy Procedia
,
82
, pp.
424
431
.10.1016/j.egypro.2015.11.829
47.
Singh
,
S.
,
Reitz
,
R.
, and
Musculus
,
M.
,
2016
, “
Comparison of the Characteristic Time (CTC), Representative Interactive Flamelet (RIF), and Direct Integration With Detailed Chemistry Combustion Models Against Optical Diagnostic Data for Multi-Mode Combustion in a Heavy-Duty DI Diesel Engine
,”
J. Engines
,
115
, pp.
61
82
.10.4271/2006-01-0055
48.
Hountalas
,
D. T.
,
Mavropoulos
,
G. C.
, and
Binder
,
K. B.
,
2008
, “
Effect of Exhaust Gas Recirculation (EGR) Temperature for Various EGR Rates on Heavy Duty DI Diesel Engine Performance and Emissions
,”
Energy
,
33
(
2
), pp.
272
283
.10.1016/j.energy.2007.07.002
49.
Zheng
,
M.
,
Reader
,
G. T.
, and
Hawley
,
J. G.
,
2004
, “
Diesel Engine Exhaust Gas recirculation – A Review on Advanced and Novel Concepts
,”
Energy Convers. Manag.
,
45
(
6
), pp.
883
900
.10.1016/S0196-8904(03)00194-8
50.
Agarwal
,
D.
,
Singh
,
S. K.
, and
Agarwal
,
A. K.
,
2011
, “
Effect of Exhaust Gas Recirculation (EGR) on Performance, Emissions, Deposits and Durability of a Constant Speed Compression Ignition Engine
,”
Appl. Energy
,
88
(
8
), pp.
2900
2807
.10.1016/j.apenergy.2011.01.066
You do not currently have access to this content.