Abstract

Increasing turbine inlet temperature (TIT) of recuperated gas turbines would lead to simultaneously high efficiency and power density, making them prime candidates for low-emission aeronautics applications, such as hybrid-electric aircraft. The inside-out ceramic turbine (ICT) architecture achieves high TIT by using compression-loaded monolithic ceramics. To resist inertial forces due to blade tip speed exceeding 450 m/s, the shroud of the ICT is made of carbon-polymer composite, wound around a metallic cooling ring. This paper demonstrates that it is beneficial to use a titanium alloy cooling ring with a thermal barrier coating (TBC), rather than nickel superalloys, for the interstitial cooling ring protecting the carbon-polymer from the hot combustion gases. A numerical design of experiments (DOE) analysis shows the design tradeoffs between the minimum safety factor and the required cooling power for multiple geometries. An optimized high-pressure first turbine stage of a 500 kW microturbine concept using ceramic blades and a titanium cooling ring in an ICT configuration is presented. Its structural performance (minimum safety factor of 1.4), as well as its cooling losses, (2% of turbine stage power) are evaluated. Finally, a 20 kW-scale prototype is tested at 300 m/s and a TIT of 1375 K during 4 h to demonstrate the viability of the concept. Experiments show that the polymer composite was kept below its maximum safe operating temperature and components show no early signs of degradation.

References

1.
Nada
,
T.
,
2014
, “
Performance Characterization of Different Configurations of Gas Turbine Engines
,”
Propul. Power Res.
,
3
(
3
), pp.
121
132
.10.1016/j.jppr.2014.07.005
2.
Nakatake
,
Y.
,
Yamashita
,
H.
,
Tanaka
,
H.
,
Goto
,
H.
, and
Suzuki
,
T.
,
2020
, “
Reduction of Fuel Consumption of a Small-Scale Gas Turbine Engine With Fine Bubble Fuel
,”
Energy
,
194
, p.
116822
.10.1016/j.energy.2019.116822
3.
National Academies of Sciences, Engineering and Medicine
,
2016
,
Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions
,
The National Academies Press
,
Washington, DC
.
4.
Picard
,
B.
,
L.-Blais
,
A.
,
Picard
,
M.
, and
Rancourt
,
D.
,
2019
, “
Power-Density vs Efficiency Trade-Off for a Recuperated Inside-Out Ceramic Turbine (ICT)
,”
ASME
Paper No. GT2019-91017.10.1115/GT2019-91017
5.
Gordon Wilson
,
D.
, and
Korakiantis
,
T.
,
2014
,
The Design of High-Efficiency Turbomachinery and Gas Turbines
,
The MIT Press
,
Cambridge, MA
.
6.
Sakakida
,
M.
,
Sasa
,
T.
,
Akiyama
,
K.
, and
Tanaka
,
S.
,
1994
, “
300 KW Class Ceramic Gas Turbine Development (CGT 301)
,”
ASME
Paper No. 94-GT-125.10.1115/94-GT-125
7.
Thibault
,
D.
,
Dubois
,
P. K.
,
Picard
,
B.
, and
Landry-Blais
,
A.
,
2020
, “
Experimental Assessment of a Sliding-Blade Inside-Out Ceramic Turbine
,”
ASME
Paper No. GT2020-15137.10.1115/GT2020-15137
8.
Kochendörfer
,
R.
,
1980
, “
Compression Loaded Ceramic Turbine Rotor
,”
AGARD Conference Proceedings,
Advisory Group for Aerospace Research & Development
, Porz-Wahn, Köln, pp.
22/1
22/19
.
9.
Landry
,
C.
,
Dubois
,
P. K.
,
Courtois
,
N.
,
Charron
,
F.
,
Picard
,
M.
, and
Plante
,
J.-S.
,
2016
, “
Development of an Inside-Out Ceramic Turbine
,”
ASME
Paper No. GT2016-57041.10.1115/GT2016-57041
10.
K. Dubois
,
P.
,
Gauvin-Verville
,
A.
,
Picard
,
B.
,
Plante
,
J.-S.
, and
Picard
,
M.
,
2021
, “
Thermal Barrier Coating Applied to the Structural Shroud of the Inside-Out Ceramic Turbine
,”
ASME
Paper No. GT2021-58972.
11.
Courtois
,
N.
,
Ebacher
,
F.
,
Dubois
,
P. K.
,
Kochrad
,
N.
,
Landry
,
C.
,
Charette
,
M.
,
Landry-Blais
,
A.
,
Fréchette
,
L. G.
,
Plante
,
J.-S.
,
Picard
,
M.
, and
Picard
,
B.
,
2017
, “
Superalloy Cooling System for the Composite Rim of an Inside-Out Ceramic Turbine
,”
ASME
Paper No. GT2017-64007.10.1115/GT2017-64007
12.
Shapiro
,
A. H.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
,
Wiley
,
New York
, Vol.
1
.
13.
Parent-Simard
,
T.
,
Landry-Blais
,
A.
,
Dubois
,
P. K.
,
Picard
,
M.
, and
Brailovski
,
V.
,
2019
, “
Effect of Surface Roughness Induced by Laser Powder Bed Fusion Additive Manufacturing in a Mini-Channel Heat Exchanger
,”
ASME
Paper No. GT2019-90978.10.1115/GT2019-90978
14.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
15.
U.S. Department of Defense
, ed.,
1998
,
Military Handbook - Metallic Materials and Elements for Aerospace Vehicle Structures
,
U.S. Department of Defense
, Philadelphia, PA.
16.
Choi
,
S. R.
,
Zhu
,
D.
, and
Miller
,
R. A.
,
2004
, “
Mechanical Properties of Plasma-Sprayed ZrO2-8 Wt% Y2O3 Thermal Barrier Coatings
,”
Therm. Barrier Coat.
, Glenn Research Center, NASA TM-2004 213216, p.
25
.https://ntrs.nasa.gov/api/citations/20040191421/downloads/20040191421.pdf
17.
Proof Research
,
2020
, “P2SI 900HT Prepregs Data Sheets.”
18.
Hexcel
,
2020
, “HexTow IM10 Carbon Fiber.”
19.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley, University of Southampton
,
UK
.
20.
Kochrad
,
N.
,
Courtois
,
N.
,
Charette
,
M.
,
Picard
,
B.
,
Landry-Blais
,
A.
,
Rancourt
,
D.
,
Plante
,
J.-S.
, and
Picard
,
M.
,
2017
, “
System-Level Performance of Microturbines With an Inside-Out Ceramic Turbine
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
062702
.10.1115/1.4035648
21.
Goulburn
,
J. R.
, and
Wilson
,
J. H.
,
1975
, “
High Speed Disk Friction Losses in a Gaseous Medium
,”
Int. J. Mech. Sci.
,
17
(
6
), pp.
379
385
.10.1016/0020-7403(75)90032-6
22.
General Electric Company, ed
., 1995,
Heat and Fluid Flow Data Book
,
Genium Publishing
,
New York
, p. Sect. 408.
23.
Performance Polymer Solutions Inc.
,
2016
, “TenCate High Temperature Materials.”
24.
Peterson
,
B.
,
2008
, “
A Combinatorial Approach to the Development of a Creep Resistant Beta Titanium Alloy
,” Ohio State University, Columbus, OH, p.
238
.
You do not currently have access to this content.