Abstract

State-of-the-art axial compressors of gas turbines employed in power generation plants and aero engines should have both high efficiency and small footprint. Thus, compressors are designed to have thin rotor blades and stator vanes with short axial distances. Recently, problems of high cycle fatigue (HCF) associated with forced response excitation have gradually increased as a result of these trends. Rotor blade fatigue can be caused not only by the wake and potential effect of the adjacent stator vane, but also by the stator vanes of two, three, or four compressor stages away. Thus, accurate prediction and suppression methods are necessary in the design process. In this study, the problem of rotor blade vibration caused by the stator vanes of two and three compressor stages away is studied. In the first part of the study, one-way fluid structure interaction (FSI) simulation is carried out. To validate the accuracy of the simulation, experiments are also conducted using a gas turbine test facility. It is found that one-way FSI simulation can accurately predict the order of the vibration level. In the second part of the study, a method of controlling the blade vibration is investigated by optimizing the clocking of the stator vanes. It is confirmed that the vibration amplitude can be effectively suppressed without reducing the performance. Through this study, ways to evaluate and control the rotor blade vibration are validated.

References

1.
Kariya
,
D.
,
Yamamoto
,
T.
, and
Ishihara
,
K.
,
2009
, “
A Blade Resonance Prediction Using Fluid-Structure Interaction Calculation Method and Comparison With the Test
,”
ASME
Paper No. GT2009-59298.10.1115/GT2009-59298
2.
Dhopade
,
P.
,
Neely
,
A.
,
Young
,
J.
, and
Shankar
,
A.
,
2012
, “
High-Cycle Fatigue of Fan Blades Accounting for Fluid-Structure Interaction
,”
ASME
Paper No. GT2012-68102.10.1115/GT2012-68102
3.
Kovachev
,
N.
,
Müller
,
R. T.
,
Waldherr
,
U. R.
, and
Vogt
,
M. D.
,
2019
, “
Prediction of Low-Engine-Order Excitation Due to a Nonsymmetrical Nozzle Ring in a Radial Turbine by Means of the Nonlinear Harmonic Approach
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121004
. 10.1115/1.4045152
4.
Gao
,
Y.
,
Salas G
,
M.
,
Repar
,
P. P.
, and
Gezork
,
T.
,
2019
, “
Forced Response Analysis of a Radial Turbine With Different Modeling Methods
,”
ASME
Paper No. GT2019-90947.10.1115/GT2019-90947
5.
Seeley
,
C.
,
Patil
,
S.
,
Madden
,
A.
,
Connell
,
S.
,
Hauet
,
G.
, and
Zori
,
L.
,
2019
, “
Hydro Francis Runner Stability and Forced Response Calculations
,”
ASME
Paper No. GT2019-90456.10.1115/GT2019-90456
6.
Kielb
,
E., R.
, and
Li
,
J.
,
2017
, “
Evaluation of Forced Response Methods on an Embedded Compressor Rotor Blade
,” First Global Power and Propulsion Forum,
Zurich, Switzerland
, Jan. 16–18, Paper No.
GPPF-2017-183
.https://www.researchgate.net/publication/325893697_Evaluation_Of_Forced_Response_Methods_On_An_Embedded_Compressor_Rotor_Blade
7.
Mao
,
Z.
,
Hegde
,
S.
,
Pan
,
T.
,
Kielb
,
E. R.
,
Zori
,
L.
, and
Campregher
,
R.
,
2018
, “
Influence of Rotor-Stator Interaction and Reflecting Boundary Conditions on Compressor Forced Response
,”
ASME
Paper No. GT2018-7523210.1115/GT2018-75232.
8.
Winhart
,
B.
,
Micallef
,
D.
, and
Engelmann
,
D.
,
2017
, “
Application of the Time Transformation Method for a Detailed Analysis of Multistage Blade Row Interactions in a Shrouded Turbine
,” 12th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics,
Stockholm, Sweden
, Apr. 3–7, Paper No.
ETC2017-094
.https://www.euroturbo.eu/paper/ETC2017-094.pdf
9.
DeMore
,
D.
,
Maghsoudi
,
E.
,
Pacheco
,
J.
,
Sorokes
,
J.
,
Hutchinson
,
B.
,
Holmes
,
W.
,
Lobo
,
B.
, and
Vashistha
,
V.
,
2014
, “
Investigation of Efficient CFD Methods for Rotating Stall Prediction in a Centrifugal Compressor Stage
,”
ASME
Paper No. GT2014-27097.10.1115/GT2014-27097
10.
Miura
,
T.
,
Yamashita
,
H.
,
Takeuchi
,
R.
, and
Sakai
,
N.
,
2021
, “
Numerical and Experimental Study on Rotating Stall in Industrial Centrifugal Compressor
,”
ASME. J. Turbomach.
,
143
(
8
), p.
081008
.10.1115/1.4050439
11.
Mischo
,
B.
,
Jenny
,
P.
,
Mauri
,
S.
,
Bidaut
,
Y.
,
Kramer
,
M.
, and
Spengler
,
S.
,
2018
, “
Numerical and Experimental FSI-Study to Determine Mechanical Stresses Induced by Rotating Stall in Unshrouded Centrifugal Compressor Impeller
,”
ASME J. Turbomach.
,
140
(
11
), p.
111006
.10.1115/1.4041400
12.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulent Models for Engineering Applications
,”
AIAA J
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
13.
Miura
,
T.
, and
Sakai
,
N.
,
2019
, “
Numerical and Experimental Studies of Labyrinth Seal Aeroelastic Instability
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111005
.10.1115/1.4044353
14.
Yoshida
,
T.
,
Sakai
,
N.
,
Matsumoto
,
A.
, and
Kitajima
,
Y.
,
2014
, “
Numerical Estimation of the Unsteady Force on Rotor Blades in a Partial Arc Admission Stage of an Axial Turbine
,”
ASME
Paper No. GT2014-26774.10.1115/GT2014-26774
15.
Biesinger
,
T.
,
Cornelius
,
C.
,
Rube
,
C.
,
Schmid
,
G.
,
Braune
,
A.
,
Campregher
,
R.
,
Godin
,
G. P.
, and
Zori
,
L.
,
2010
, “
Unsteady CFD Methods in a Commercial Solver for Turbomachinery Application
,”
ASME
Paper No. GT2010-22762.10.1115/GT2010-22762
16.
Robinson
,
C.
,
Casey
,
M.
,
Hutchinson
,
B.
, and
Steed
,
R.
,
2012
, “
Impeller-Diffuser Interaction on Centrifugal Compressors
,”
ASME
Paper No. GT2012-69151.10.1115/GT2012-69151
17.
Cornelius
,
C.
,
Biesinger, Galpin
,
P.
, and
Braune
,
A.
,
2013
, “
Experimental and Computational Analysis of Multistage Axial Compressor Including Stall Prediction by Steady and Transient CFD Methods
,”
ASME
Paper No. GT2013-94639.10.1115/GT2013-94639
18.
Cornelius
,
C.
,
Biesinger
,
T.
,
Zori
,
L.
,
Campregher
,
R.
,
Galpin
,
P.
, and
Braune
,
A.
,
2014
, “
Efficient Time Resolved Multistage CFD Analysis Applied to Axial Compressor
,”
ASME
Paper No. GT2014-26846.10.1115/GT2014-26846
19.
Elder
,
R.
,
Woods
,
I.
,
Patil
,
S.
,
Holmes
,
W.
,
Steed
,
R.
, and
Hutchinson
,
B.
,
2013
, “
Investigation of Efficient CFD Methods for the Prediction of Blade Damping
,”
ASME
Paper No. GT2013-95005.10.1115/GT2013-95005
20.
Patil
,
S.
,
Zori
,
L.
,
Galpin
,
P.
,
Morales
,
J.
, and
Godin
,
P.
,
2016
, “
Investigation of Time/Frequency Domain CFD Methods to Predict Turbomachinery Blade Aerodynamic Damping
,”
ASME
Paper No. GT2016-57962.10.1115/GT2016-57962
21.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Prog. Aerosp. Sci.
,
46
(
8
), pp.
329
341
.10.1016/j.paerosci.2010.04.001
22.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flow in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.10.2514/2.1754
23.
Gopinath
,
A.
, and
Jameson
,
A.
,
2005
, “
Time Spectral Method for Periodic Unsteady Computations Over Two and Three-Dimensional Bodies
,”
AIAA
Paper No. 2005-1220.10.2514/6.2005-1220.1
24.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
Soc. Automot. Eng. Trans.
,
70
(
1
), pp.
309
332
.10.4271/620532
25.
Milidonis
,
K.
,
Semlitsch
,
B.
, and
Hynes
,
T.
,
2018
, “
Effect of Clocking on Compressor Noise Generation
,”
AIAA J.
,
56
(
11
), pp.
4225
4231
.10.2514/1.J057256
26.
Figaschewsky
,
F.
,
Kühhorn
,
A.
,
Beirow
,
B.
,
Giersch
,
T.
, and
Schrape
,
S.
,
2019
, “
Analysis of Mistuned Forced Response in an Axial High-Pressure Compressor Rig With Focus on Tyler–Sofrin Modes
,”
Aeronaut. J.
,
123
(
1261
), pp.
356
377
.10.1017/aer.2018.163
27.
Terstegen
,
M.
,
Sanders
,
C.
,
Jeschke
,
P.
, and
Schoenenborn
,
H.
,
2019
, “
Rotor–Stator Interactions in a 2.5-Stage Axial Compressor—Part I: Experimental Analysis of Tyler–Sofrin Modes
,”
ASME J. Turbomach.
,
141
(
10
), p.
101002
.10.1115/1.4043961
28.
Aschenbruck
,
J.
, and
Seume
,
J.
,
2015
, “
Experimentally Verified Study of Regeneration-Induced Forced Response in Axial Turbines
,”
ASME J. Turbomach.
,
137
(
3
), p.
031006
.10.1115/1.4028350
You do not currently have access to this content.