Abstract

The hybrid computational fluid dynamics/computational aeroacoustics (CFD/CAA) approach represents an effective method to assess the stability of noncompact thermoacoustic systems. This paper summarizes the state-of-the-art of this method, which is currently applied for the stability prediction of a lab-scale configuration of a perfectly premixed, swirl-stabilized gas turbine combustion chamber at the Thermodynamics institute of the Technical University of Munich. Specifically, 80 operational points, for which experimentally observed stability information is readily available, are numerically investigated concerning their susceptibility to develop thermoacoustically unstable oscillations at the first transversal eigenmode of the combustor. Three contributions are considered in this work: (1) flame driving due the deformation and displacement of the flame, (2) visco-thermal losses in the acoustic boundary layer and (3) damping due to acoustically induced vortex shedding. The analysis is based on eigenfrequency computations of the Linearized Euler Equations with the stabilized finite element method (sFEM). One main advancement presented in this study is the elimination of the nonphysical impact of artificial diffusion schemes, which is necessary to produce numerically stable solutions, but falsifies the computed stability results.

References

1.
Lieuwen
,
T.
, and
McManus
,
K.
,
2003
, “
Introduction: Combustion Dynamics in Lean-Premixed Prevaporized (LPP) Gas Turbines
,”
J. Propul. Power
,
19
(
5
), pp.
721
721
.10.2514/2.6171
2.
Lieuwen
,
T. C.
,
2013
,
Unsteady Combustor Physics
,
Cambridge University Press
,
Cambridge, UK
.
3.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C. O.
,
2003
, “
Thermoacoustic Modeling and Control of Multi Burner Combustion Systems
,”
ASME
Paper No. GT2003-38688.10.1115/GT2003-38688
4.
Culick
,
F.
,
2008
, “
Unsteady Motions in Combustion Chambers for Propulsion Systems
,” RTO N.A.T.O., Neuilly-sur-Seine, France, Report No. TR-IST-028.
5.
Rayleigh
,
J. W. S.
,
1926
, “
The Theory of Sound
,” Volume 1&2, 2nd ed.,
Macmillan
,
New York
.
6.
Dowling
,
A. P.
,
1997
, “
Nonlinear Self-Excited Oscillations of a Ducted Flame
,”
J. Fluid Mech.
,
346
, pp.
271
290
.10.1017/S0022112097006484
7.
Gikadi
,
J.
,
2014
, “
Prediction of Acoustic Modes in Combustors Using Linearized Navier“Stokes Equations in Frequency Space
,”
Ph.D. thesis
, Technical University of Munich, München, Germany.https://mediatum.ub.tum.de/doc/1166369/1166369.pdf
8.
Schulze
,
M.
,
Hummel
,
T.
,
Klarmann
,
N.
,
Berger
,
F.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
Linearized Euler Equations for the Prediction of Linear High-Frequency Stability in Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
031510
.10.1115/1.4034453
9.
Hummel
,
T.
,
2019
, “
Modeling and Analysis of High-Frequency Thermoacoustic Oscillations in Gas Turbine Combustion Chambers
,”
Ph.D. thesis
, Technical University of Munich, München, Germany.https://www.mw.tum.de/fileadmin/w00btx/td/Forschung/Dissertationen/Hummel2019.pdf
10.
Donéa
,
J.
, and
Huerta
,
A.
,
2003
,
Finite Element Methods for Flow Problems
,
Wiley
,
Chichester
.
11.
Hofmeister
,
T.
,
Hummel
,
T.
, and
Sattelmayer
,
T.
,
2020
, “
Impact of the Stabilized Finite Element Method on Acoustic and Vortical Perturbations in Thermoacoustic Systems
,”
ASME
Paper No. GT2020-14475
.10.1115/GT2020-14475
12.
Berger
,
F.
,
Hummel
,
T.
,
Hertweck
,
M.
,
Kaufmann
,
J.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part I: Experimental Investigation of Local Flame Response
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
071501
.10.1115/1.4035591
13.
Hummel
,
T.
,
Berger
,
F.
,
Hertweck
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part II: Modeling and Analysis
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
071502
.10.1115/1.4035592
14.
Klarmann
,
N.
,
Sattelmayer
,
T.
,
Weiqun
,
G.
, and
Magni
,
F.
,
2016
, “
Flamelet Generated Manifolds for Partially-Premixed, Highly-Stretched and Non-Adiabatic Combustion in Gas Turbines
,”
AIAA Paper No. 2016-2120.
10.2514/6.2016-2120
15.
Klarmann
,
N.
,
Zoller
,
B. T.
, and
Sattelmayer
,
T.
,
2019
, “
Modeling of CO Emissions in Multi-Burner Systems With Fuel Staging
,”
ASME
Paper No. GT2019-90821.10.1115/GT2019-90821
16.
Strobio Chen
,
L.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2016
, “
Propagation and Generation of Acoustic and Entropy Waves Across a Moving Flame Front
,”
Combust. Flame
,
166
(
C
), pp.
170
180
.10.1016/j.combustflame.2016.01.015
17.
Hughes
,
T.
, and
Brooks
,
A.
,
1979
, “
A Multidimensional Upwind Scheme With No Crosswind Diffusion
,” Finite Element Methods for Convection Dominated Flows, AMD, ASME, New York, 34, pp. 19–35.
18.
Howe
,
M. S.
,
1979
, “
Attenuation of Sound in a Low Mach Number Nozzle Flow
,”
J. Fluid Mech.
,
91
(
2
), pp.
209
229
.10.1017/S0022112079000124
19.
Hofmeister
,
T.
,
Hummel
,
T.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2019
, “
Theory and Quantification of Energy Transformation Processes Between Acoustic and Hydrodynamic Perturbation Modes in Non-Compact Thermoacoustic Systems Via a Helmholtz-Hodge Decomposition Approach
,”
ASME
Paper No. GT2019-90240
. 10.111/GT2019-90240
20.
Ewert
,
R.
, and
Schröder
,
W.
,
2003
, “
Acoustic Perturbation Equations Based on Flow Decomposition Via Source Filtering
,”
J. Comput. Phys.
,
188
(
2
), pp.
365
398
.10.1016/S0021-9991(03)00168-2
21.
Searby
,
G.
,
Habiballah
,
M.
,
Nicole
,
A.
, and
Laroche
,
E.
,
2008
, “
Prediction of the Efficiency of Acoustic Damping Cavities
,”
J. Propul. Power
,
24
(
3
), pp.
516
523
.10.2514/1.32325
22.
Cantrell
,
R. H.
, and
Hart
,
R. W.
,
1964
, “
Interaction Between Sound and Flow in Acoustic Cavities: Mass, Momentum, and Energy Considerations
,”
J. Acoust. Soc. Am.
,
36
(
4
), pp.
697
706
.10.1121/1.1919047
23.
Berger
,
F.
,
Hummel
,
T.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2018
, “
Pulsation-Amplitude-Dependent Flame Dynamics of High-Frequency Thermoacoustic Oscillations in Lean-Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041507
.10.1115/1.4038036
24.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C. J.
,
Lissianski
,
V. V.
,
Qin
,
Z.
, “
GRI-Mech 3.0
,” GRI-Mech, accessed Jan. 21, 2021, http://combustion.berkeley.edu/gri-mech/
25.
Motheau
,
E.
,
Selle
,
L.
, and
Nicoud
,
F.
,
2014
, “
Accounting for Convective Effects in Zero-Mach-Number Thermoacoustic Models
,”
J. Sound Vib.
,
333
(
1
), pp.
246
262
.10.1016/j.jsv.2013.08.046
26.
Magri
,
L.
,
2019
, “
Adjoint Methods as Design Tools in Thermoacoustics
,”
Appl. Mech. Rev.
,
71
(
2
), p.
020801
.10.1115/1.4042821
27.
Klarmann
,
N.
,
Sattelmayer
,
T.
,
Geng
,
W.
,
Zoller
,
B. T.
, and
Magni
,
F.
,
2016
, “
Impact of Flame Stretch and Heat Loss on Heat Release Distributions in Gas Turbine Combustors: Model Comparison and Validation
,”
ASME
Paper No. GT2016-57625.10.111/GT2016-57625
28.
Romero Vega
,
P.
,
Berger
,
F. M.
,
Hummel
,
T.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2018
, “
Numerical Design of a Novel Reheat Combustor Experiment for the Analysis of High-Frequency Flame Dynamics
,”
ASME
Paper No. GT2018-77034.10.1115/GT2018-77034
29.
Hofmeister
,
T.
,
Hummel
,
T.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2020
, “
Modeling and Quantification of Acoustic Damping Induced by Vortex Shedding in Non-Compact Thermoacoustic Systems
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031016
.10.1115/1.4044936
30.
Mensah
,
G. A.
,
Magri
,
L.
,
Silva
,
C. F.
,
Buschmann
,
P. E.
, and
Moeck
,
J. P.
,
2018
, “
Exceptional Points in the Thermoacoustic Spectrum
,”
J. Sound Vib.
,
433
, pp.
124
128
.10.1016/j.jsv.2018.06.069
You do not currently have access to this content.