Abstract

The application of exhaust gas recirculation (EGR) technology on gasoline direct injection (GDI) engines can suppress knocking, reduce fuel consumption, and reduce NOx emissions. The effects of EGR with enhanced intake tumble flow, on the combustion phase, combustion duration, knock index and combustion cycle variation of the engine, were studied at two speeds of 1500 r/min and 2000 r/min from low to medium and to full load. The research shows that although the commercial engine has been well calibrated and optimized, the optimization of EGR and enhanced tumble flow together with the optimization of the ignition angle can improve the engine's economy and emission characteristics, while maintaining relatively fast burning speed and low combustion cycle variation. From medium to heavy load, the economy can be improved by 2.6–10%, and the minimum fuel consumption can be reduced to 213 g/kW. h. Under heavy load conditions (brake mean effective pressure (BMEP) more than 14 bars), power performance deteriorates due to insufficient boost performance. The 5–20% EGR rate brings 10% power loss. EGR combined with tumble intake has a significant effect on reducing the engine's NOx and CO, with average reductions of 60% and 22%, but HC increased by 32%.

References

1.
Zhong
,
L.
,
Musial
,
M.
,
Reese
,
R.
, and
Black
,
G.
,
2013
, “
EGR Systems Evaluation in Turbocharged Engines
,”
SAE
Paper No. 2013-01-0936.10.4271/ 2013-01-0936
2.
Wei
,
H.
,
Zhu
,
T.
,
Shu
,
G.
,
Tan
,
L.
, and
Wang
,
Y.
,
2012
, “
Gasoline Engine Exhaust Gas Recirculation – A Review
,”
Appl. Energy
,
99
, pp.
534
544
.10.1016/j.apenergy.2012.05.011
3.
Wang
,
Z.
,
Liu
,
H.
, and
Reitz
,
R.
,
2017
, “
Knocking Combustion in Spark-Ignition Engines
,”
Prog. Energy Combust. Sci.
,
61
, pp.
78
112
.10.1016/j.pecs.2017.03.004
4.
Takaki
,
D.
,
Tsuchida
,
H.
,
Kobara
,
T.
,
Akagi
,
M
,
Tsuyuki
,
T.
, and
Nagamine
,
M.
,
2014
, “
Study of an EGR System for Downsizing Turbocharged Gasoline Engine to Improve Fuel Economy
,”
SAE
Paper No. 2014-01-1199.10.4271/2014-01-1199
5.
Jung
,
D.
,
Sasaki
,
K.
,
Sugata
,
K.
,
Matsuda
,
M.
,
Yokomori
,
T.
, and
Lida
,
N.
,
2017
, “
Combined Effects of Spark Discharge Pattern and Tumble Level on Cycle-to-Cycle Variations of Combustion at Lean Limits of SI Engine Operation
,”
SAE
Paper No. 2017-01-0677.10.4271/2017-01-0677
6.
Salvi
,
B. L.
, and
Subramanian
,
K. A.
,
2015
, “
Experimental Investigation and Phenomenological Model Development of Flame Kernel Growth Rate in a Gasoline Fuelled Spark Ignition Engine
,”
Appl. Energy
,
139
, pp.
93
103
.10.1016/j.apenergy.2014.11.012
7.
Badawy
,
T.
,
Bao
,
X.
, and
Xu
,
H.
,
2017
, “
Impact of Spark Plug Gap on Flame Kernel Propagation and Engine Performance
,”
Appl. Energy
,
191
, pp.
311
327
.10.1016/j.apenergy.2017.01.059
8.
Wang
,
Z.
,
Magi
,
V.
, and
Abraham
,
J.
,
2017
, “
Turbulent Flame Speed Dependencies in Lean Methane-Air Mixtures Under Engine Relevant Conditions
,”
Combust. Flame
,
180
, pp.
53
62
.10.1016/j.combustflame.2017.02.023
9.
Baby
,
X.
, and
Floch
,
A.
,
1997
, “
Investigation of the in-Cylinder Tumble Motion in a Multi-Valve Engine: Effect of the Piston Shape
,”
SAE
Paper No. 971643.10.4271/971643
10.
Bari
,
S.
, and
Saad
,
I.
,
2013
, “
CFD Modelling of the Effect of Guide Vane Swirl and Tumble Device to Generate Better in-Cylinder Air Flow in a CI Engine Fuelled by Biodiesel
,”
Comput. Fluids
,
84
, pp.
262
269
.10.1016/j.compfluid.2013.06.011
11.
He
,
Y.
,
Selamet
,
A.
,
Reese
,
R.
,
Vick
,
R.
, and Amer, A.,
2007
, “
Impact of Tumble on Combustion in SI Engines: Correlation between Flow and Engine Experiments
,”
SAE
Paper No. 2007-01-4003.10.4271/2007-01-4003
12.
Scaringe
,
R.
, and
Cheng
,
W.
,
2007
, “
Influence of Intake Port Charge-Motion-Control-Valve on Mixture Preparation in a Port-Fuel-Injection Engine
,”
SAE
Paper No. 2007-01-4013.10.4271/2007-01-4013
13.
Kidokoro
,
T.
,
Hoshi
,
K.
,
Hiraku
,
K.
,
Satoya
,
K.
,
Watanabe
,
T.
, and
Fujiwara
,
T.
,
2003
, “
Development of PZEV Exhaust Emission Control System
,”
SAE
Paper No. 2003-01-0817.10.4271/2003-01-0817
14.
Kishi
,
N.
,
Kikuchi
,
S.
,
Suzuki
,
N.
, and
Hayashi
,
T.
,
1999
, “
Technology for Reducing Exhaust Gas Emissions in Zero Level Emission Vehicles (ZLEV)
,”
SAE
Paper No. 1999-01-0772.10.4271/1999-01-0772
15.
Nishizawa
,
K.
,
Momoshima
,
S.
,
Koga
,
M.
, and
Tsuchida
,
H.
,
2000
, “
Development of New Technologies Targeting Zero Emissions for Gasoline Engines
,”
SAE
Paper No. 2000-01-0890.10.4271/ 2000-01-0890
16.
Adomeit
,
P.
,
Jakob
,
M.
,
Pischinger
,
S.
,
Brunn
,
A.
, and
Ewald
,
J.
,
2011
, “
Effect of Intake Port Design on the Flow Field Stability of a Gasoline DI Engine
,”
SAE
Paper No. 2011-01-1284.10.4271/2011-01-1284
17.
Han
,
S.
,
Qin
,
J.
,
Lin
,
M.
,
Li
,
Y.
, and
Zhang
,
Y.
,
2014
, “
Simulation Study of Injection Strategy and Tumble Effect on the Mixture Formation and Spray Impingement in a Gasoline Direct Injection Engine
,”
SAE
Paper No. 2014-01-1129.10.4271/2014-01-1129
18.
Changming
,
H.
, and
Sichuan
,
X.
,
2014
, “
The Investigation and Application of Variable Tumble Intake System on a GDI Engine
,”
SAE Int. J. Engines
,
7
(
4
), pp.
2022
2034
.10.4271/2014-01-2885
19.
Wheeler
,
J.
,
Polovina
,
D.
,
Ramanathan
,
S.
,
Roth
,
K.
,
Manning
,
D.
, and
Stein
,
J.
,
2013
, “
Increasing EGR Tolerance Using High Tumble in a Modern GTDI Engine for Improved Low-Speed Performance
,”
SAE
Paper No. 2013-01-1123.10.4271/2013-01-1123
20.
Zhang
,
Z.
,
Zhang
,
H.
,
Wang
,
T.
, and
Jia
,
M.
,
2014
, “
Effects of Tumble Combined With EGR (Exhaust Gas Recirculation) on the Combustion and Emissions in a Spark Ignition Engine at Part Loads
,”
Energy
,
65
, pp.
18
24
.10.1016/j.energy.2013.11.062
21.
Fu
,
J.
,
Zhu
,
G.
,
Zhou
,
F.
,
Liu
,
J.
,
Xia
,
Y.
, and
Wang
,
S.
,
2016
, “
Experimental Investigation on the Influences of Exhaust Gas Recirculation Coupling With Intake Tumble on Gasoline Engine Economy and Emission Performance
,”
Energy Convers. Manage.
,
127
, pp.
424
436
.10.1016/j.enconman.2016.09.033
22.
Shen
,
K.
,
Li
,
F.
,
Zhang
,
Z.
,
Sun
,
Y.
, and
Yin
,
C.
,
2017
, “
Effects of LP and HP Cooled EGR on Performance and Emissions in Turbocharged GDI Engine
,”
Appl. Therm. Eng.
,
125
, pp.
746
755
.10.1016/j.applthermaleng.2017.07.064
23.
Yin
,
C.
,
Zhang
,
Z.
,
Sun
,
Y.
,
Sun
,
T.
, and
Zhang
,
R.
,
2016
, “
Effect of the Piston Top Contour on the Tumble Flow and Combustion Features of a GDI Engine With a CMCV: A CFD Study
,”
Eng. Appl. Comput. Fluid Mech.
,
10
(
1
), pp.
311
329
.10.1080/19942060.2016.1157099
24.
Malaquias
,
A.
,
Netto
,
N.
,
Costa
,
R.
, and
Baêta
,
J.
,
2020
, “
Combined Effects of Internal Exhaust Gas Recirculation and Tumble Motion Generation in a Flex-Fuel Direct Injection Engine
,”
Energy Convers. Manage.
,
217
, p.
113007
.10.1016/j.enconman.2020.113007
25.
Yang
,
J.
,
Dong
,
X.
,
Wu
,
Q.
, and
Xu
,
M.
,
2019
, “
Effects of Enhanced Tumble Ratios on the in-Cylinder Performance of a Gasoline Direct Injection Optical Engine
,”
Appl. Energy
,
236
, pp.
137
146
.10.1016/j.apenergy.2018.11.059
26.
Park
,
S.
, and
Furukawa
,
T.
,
2015
, “
Validation of Turbulent Combustion and Knocking Simulation in Spark-Ignition Engines Using Reduced Chemical Kinetics
,”
SAE
Paper No. 2015-01-0750.10.4271/2015-01-0750
27.
D'Adamo
,
A.
,
Breda
,
S.
,
Fontanesi
,
S.
, and
Cantore
,
G.
,
2016
, “
A RANS-Based CFD Model to Predict the Statistical Occurrence of Knock in Spark-Ignition Engines
,”
SAE Int. J. Engines
,
9
(
1
), pp.
618
630
.10.4271/2016-01-0581
28.
Breda
,
S.
,
D'Adamo
,
A.
,
Fontanesi
,
S.
,
Giovannoni
,
N.
,
Testa
,
F.
,
Irimescu
,
A.
,
Merola
,
S.
,
Tornatore
,
C.
, and
Valentino
,
G.
,
2016
, “
CFD Analysis of Combustion and Knock in an Optically Accessible GDI Engine
,”
SAE Int. J. Engines
,
9
(
1
), pp.
641
656
.10.4271/2016-01-0601
You do not currently have access to this content.