Abstract

Thermoacoustic instabilities can occur in a wide range of combustors and are prejudicial since they can lead to increased mechanical fatigue or even catastrophic failure. A well-established formalism to predict the onset, growth and saturation of such instabilities is based on acoustic network models. This approach has been successfully employed to predict the frequency and amplitude of limit cycle oscillations in a variety of combustors. However, it does not provide any physical insight in terms of the acoustic energy balance of the system. On the other hand, Rayleigh's criterion may be used to quantify the losses, sources and transfers of acoustic energy within and at the boundaries of a combustor. However, this approach is cumbersome for most applications because it requires computing volume and surface integrals and averaging over an oscillation cycle. In this work, a new methodology for studying the acoustic energy balance of a combustor during the onset, growth and saturation of thermoacoustic instabilities is proposed. The two cornerstones of this new framework are the acoustic absorption coefficient Δ and the cycle-to-cycle acoustic energy ratio λ, both of which do not require computing integrals. Used along with a suitable acoustic network model, where the flame frequency response is described using the weakly nonlinear Flame Describing Function (FDF) formalism, these two dimensionless numbers are shown to characterize: 1) the variation of acoustic energy stored within the combustor between two consecutive cycles, 2) the acoustic energy transfers occurring at the combustor's boundaries, and 3) the sources and sinks of acoustic energy located within the combustor. The acoustic energy balance of the well-documented Palies burner is then analyzed during the onset, growth and saturation of thermoacoustic instabilities using this new methodology. It is demonstrated that this new approach allows a deeper understanding of the physical mechanisms at play. For instance, it is possible to determine when the flame acts as an acoustic energy source or sink, where acoustic damping is generated, and if acoustic energy is transmitted through the boundaries of the burner.

References

1.
Putnam
,
A.
,
1971
,
Combustion Driven Oscillations in Industry
,
Elsevier
,
New-York
.
2.
Eisinger
,
F. L.
, and
Sullivan
,
R. E.
,
2002
, “
Avoiding Thermoacoustic Vibration in Burner/Furnace Systems
,”
ASME J. Pressure Vessel Technol.
,
124
(
4
), pp.
418
424
.10.1115/1.1462623
3.
Crocco
,
L.
,
1951
, “
Aspects of Combustion Stability in Liquid Propellant Rocket Motors (Part 1)
,”
J. Am. Rocket Soc.
,
21
(
6
), pp.
163
178
.10.2514/8.4393
4.
Crocco
,
L.
,
1952
, “
Aspects of Combustion Stability in Liquid Propellant Rocket Motors (Part 2)
,”
J. Am. Rocket Soc.
,
22
(
1
), pp.
7
16
.10.2514/8.4410
5.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.10.1016/S1540-7489(02)80007-4
6.
Correa
,
S. M.
,
1993
, “
A Review of NOx Formation Under Gas Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
(
1–6
), pp.
329
362
.10.1080/00102209208947221
7.
Keller
,
J. J.
,
1995
, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
,
33
(
12
), pp.
2280
2287
.10.2514/3.12980
8.
Dowling
,
A. P.
, and
Morgans
,
A. S.
,
2005
, “
Feedback Control of Combustion Oscillations
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
151
182
.10.1146/annurev.fluid.36.050802.122038
9.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
10.
McManus
,
K. R.
,
Poinsot
,
T.
, and
Candel
,
S.
,
1993
, “
A Review of Active Control of Combustion Instabilities
,”
Prog. Energy Combust. Sci.
,
19
(
1
), pp.
1
29
.10.1016/0360-1285(93)90020-F
11.
Lieuwen
,
T.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
, Vol.
210
,
AIAA
, Reston, VA.
12.
Merk
,
H. J.
,
1957
, “
An Analysis of Unstable Combustion of Premixed Gases
,”
Symp. (Int.) Combust.
,
6
(
1
), pp.
500
512
.10.1016/S0082-0784(57)80067-8
13.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
751
764
.10.2514/2.6192
14.
Paschereit
,
C. O.
, and
Polifke
,
W.
,
1998
, “
Investigation of the Thermoacoustic Characteristics of a Lean Premixed Gas Turbine Burner - 98-GT-582
,”
ASME
Paper No. 98-GT-582.10.1115/98-GT-582
15.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2008
, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
,
615
, pp.
139
167
.10.1017/S0022112008003613
16.
Han
,
X.
,
Li
,
J.
, and
Morgans
,
A. S.
,
2015
, “
Prediction of Combustion Instability Limit Cycle Oscillations by Combining Flame Describing Function Simulations With a Thermoacoustic Network Model
,”
Combust. Flame
,
162
(
10
), pp.
3632
3647
.10.1016/j.combustflame.2015.06.020
17.
Gaudron
,
R.
,
Gatti
,
M.
,
Mirat
,
C.
, and
Schuller
,
T.
,
2019
, “
Impact of the Acoustic Forcing Level on the Transfer Matrix of a Turbulent Swirling Combustor With and Without Flame
,”
Flow Turbul. Combust.
,
103
(
12
), pp.
751
771
.10.1007/s10494-019-00033-z
18.
Liu
,
Y.
,
Dowling
,
A. P.
,
Swaminathan
,
N.
,
Morvant
,
R.
,
Macquisten
,
M. A.
, and
Caracciolo
,
L. F.
,
2014
, “
Prediction of Combustion Noise for an Aeroengine Combustor
,”
J. Propul. Power
,
30
(
1
), pp.
114
122
.10.2514/1.B34857
19.
Li
,
J.
,
Yang
,
D.
,
Luzzato
,
C.
, and
Morgans
,
A.
,
2017
, “
OSCILOS Report
,”
Technical Report
.https://www.oscilos.com/download/OSCILOS_Long_Tech_report.pdf
20.
Paschereit
,
C. O.
,
Polifke
,
W.
,
Schuermans
,
B.
,
Mattson
,
O.
,
Polifke
,
W.
, and
Mattson
,
O.
,
2002
, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
239
247
.10.1115/1.1383255
21.
Schuermans
,
B. B. H.
,
Polifke
,
W.
, and
Paschereit
,
C. O.
,
1999
, “
Modeling Transfer Matrices of Premixed Flames and Comparison With Experimental Results
,”
ASME
Paper No. 99-GT-132.10.1115/99-GT-132
22.
Polifke
,
W.
,
Fischer
,
A.
, and
Sattelmayer
,
T.
,
2003
, “
Instability of a Premix Burner With Nonmonotonic Pressure Drop Characteristic
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
20
27
.10.1115/1.1519267
23.
Gaudron
,
R.
,
2018
, “
Acoustic Response of Premixed Flames Submitted to Harmonic Sound Waves
,”
Ph.D. thesis
,
Université Paris-Saclay, Gif-sur-Yvette, France
.https://www.researchgate.net/publication/330912972_Acoustic_response_of_premixed_flames_submitted_to_harmonic_sound_waves
24.
Dowling
,
A. P.
,
1997
, “
Nonlinear Self-Excited Oscillations of a Ducted Flame
,”
J. Fluid Mech.
,
346
, pp.
271
290
.10.1017/S0022112097006484
25.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Nonlinear Combustion Instability Analysis Based on the Flame Describing Function Applied to Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
158
(
10
), pp.
1980
1991
.10.1016/j.combustflame.2011.02.012
26.
Rayleigh
,
J. W. S.
,
1878
,
The Theory of Sound - Volume II
, Macmillan and Co., London, UK.
27.
Durox
,
D.
,
Schuller
,
T.
,
Noiray
,
N.
,
Birbaud
,
A. L.
, and
Candel
,
S.
,
2009
, “
Rayleigh Criterion and Acoustic Energy Balance in Unconfined Self-Sustained Oscillating Flames
,”
Combust. Flame
,
156
(
1
), pp.
106
119
.10.1016/j.combustflame.2008.07.016
28.
Morfey
,
C. L.
,
1971
, “
Acoustic Energy in Non-Uniform Flows
,”
J. Sound Vib.
,
14
(
2
), pp.
159
170
.10.1016/0022-460X(71)90381-6
29.
Chu
,
B. T.
,
1965
, “
On the Energy Transfer to Small Disturbances in Fluid Flow (Part I)
,”
Acta Mech.
,
1
(
3
), pp.
215
234
.10.1007/BF01387235
30.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
, R. T. Edwards, London, UK.
31.
Magri
,
L.
,
Juniper
,
M. P.
, and
Moeck
,
J. P.
,
2020
, “
Sensitivity of the Rayleigh Criterion in Thermoacoustics
,”
J. Fluid Mech.
,
882
(
R1
), pp.
1
12
.10.1017/jfm.2019.860
32.
Morfey
,
C. L.
,
1971
, “
Sound Transmission and Generation in Ducts With Flow
,”
J. Sound Vib.
,
14
(
1
), pp.
37
55
.10.1016/0022-460X(71)90506-2
33.
Rienstra
,
S. W.
, and
Hirschberg
,
A.
,
2005
,
An Introduction to Acoustics
,
Eindhoven University of Technology
, Eindhoven, The Netherlands.
34.
Cantrell
,
R. H.
, and
Hart
,
R. W.
,
1964
, “
Interaction Between Sound and Flow in Acoustic Cavities: Mass, Momentum, and Energy Considerations
,”
J. Acoust. Soc. Am.
,
36
(
4
), pp.
697
706
.10.1121/1.1919047
35.
Gaudron
,
R.
, and
Morgans
,
A. S.
,
2019
, “
Acoustic Absorption in a Subsonic Mean Flow at a Sudden Cross Section Area Change
,” 26th International Congress on Sound and Vibration (
ICSV26
), Montréal, PQ, Canada, July 7–11, pp.
1
8
. https://www.researchgate.net/publication/334138812_Acoustic_absorption_in_a_subsonic_mean_flow_at_a_sudden_cross_section_area_change
36.
Gaudron
,
R.
, and
Morgans
,
A. S.
,
2019
, “
The Acoustic Absorption Coefficient of Short Circular Holes Sustaining a High Reynolds Number Bias Flow
,” 23rd International Congress on Acoustics (
ICA2019
), Aachen, Germany, Sept. 9–13.https://www.researchgate.net/publication/335444690_The_acoustic_absorption_coefficient_of_short_circular_holes_sustaining_a_high_Reynolds_number_bias_flow
37.
Ni
,
F.
,
Miguel-Brebion
,
M.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2017
, “
Accounting for Acoustic Damping in a Helmholtz Solver
,”
AIAA J.
,
55
(
4
), pp.
1205
1220
.10.2514/1.J055248
38.
Bauerheim
,
M.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2015
, “
Theoretical Analysis of the Mass Balance Equation Through a Flame at Zero and Non-Zero Mach Numbers
,”
Combust. Flame
,
162
(
1
), pp.
60
67
.10.1016/j.combustflame.2014.06.017
39.
Chen
,
L. S.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2016
, “
Propagation and Generation of Acoustic and Entropy Waves Across a Moving Flame Front
,”
Combust. Flame
,
166
, pp.
170
180
.10.1016/j.combustflame.2016.01.015
40.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2010
, “
The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
157
(
9
), pp.
1698
1717
.10.1016/j.combustflame.2010.02.011
41.
Palies
,
P.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2011
, “
Modeling of Premixed Swirling Flames Transfer Functions
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2967
2974
.10.1016/j.proci.2010.06.059
42.
Palies
,
P.
,
Schuller
,
T.
,
Durox
,
D.
,
Gicquel
,
L. Y. M.
, and
Candel
,
S.
,
2011
, “
Acoustically Perturbed Turbulent Premixed Swirling Flames
,”
Phys. Fluids
,
23
(
3
), pp.
1
15
.10.1063/1.3553276
43.
Li
,
J.
, and
Morgans
,
A. S.
,
2015
, “
Time Domain Simulations of Nonlinear Thermoacoustic Behaviour in a Simple Combustor Using a Wave-Based Approach
,”
J. Sound Vib.
,
346
, pp.
345
360
.10.1016/j.jsv.2015.01.032
44.
Xia
,
Y.
,
Laera
,
D.
,
Jones
,
W. P.
, and
Morgans
,
A. S.
,
2019
, “
Numerical Prediction of the Flame Describing Function and Thermoacoustic Limit Cycle for a Pressurised Gas Turbine Combustor
,”
Combust. Sci. Tech.
,
191
(
5–6
), pp.
979
1002
.10.1080/00102202.2019.1583221
You do not currently have access to this content.