Abstract

Energy companies in the power generation field are continuously searching for green technologies to reduce pollutant emissions. In that context, small hydropower plants represent an attractive solution for distributed electricity generation. Reverse-running centrifugal pumps (also known as “pump-as-turbines,” PaT) are increasingly selected in that field. Amongst the existing type of pumps, drag-type regenerative pumps (RP) can perform similarly to radial centrifugal pumps in terms of head and efficiency for low specific speed values. For a fixed rotational speed, RPs with linear blades work as pumps or turbines only depending on the flow rate. Such peculiarity makes it particularly intriguing to evaluate RPs working characteristics in the turbine operating mode. In this paper, the performance of three regenerative pump-as-turbines (RPaT) is analyzed using computational fluid dynamics (CFD). The numerical approach is validated using experimental data for both an RP (in the pump working region) and a regenerative turbine (RT) (in the turbine working region). Finally, the numerical simulation of a small-scale RP allows for characterizing both the pump and the turbine regions. Results show that for an RPaT it is possible to find a “switch region” where the machine turns from behaving as a pump to behaving as a turbine, the losses not being overcome by the turbine power output. The analysis of the RPaT also shows the inversion of the flow pattern and the constant positioning of the pivot around which the flow creates the typical helical structure that characterizes RPs.

References

1.
Wilson
,
W. A.
,
Santalo
,
M. A.
, and
Oelrich
,
J. A.
,
1955
, “
Theory of the Fluid-Dynamic Mechanism of Regenerative Pumps
,”
Trans. ASME
,
77
, pp.
1303
1316
.https://www.semanticscholar.org/paper/A-Theory-of-the-Fluid-Dynamic-Mechanism-of-Pumps-Wilson/ba2a5dfd0d4f3508e53b5ef0e4643596d75fd716#paper-header
2.
Cantini
,
G.
,
Salvadori
,
S.
,
Insinna
,
M.
,
Peroni
,
G.
,
Simon
,
G.
,
Griffini
,
D.
, and
Squarcini
,
R.
,
2019
, “
Development of a One-Dimensional Model for the Prediction of Leakage Flows in Rotating Cavities Under Non-Uniform Tangential Pressure Distribution
,”
Int. J. Turbomach. Propuls. Power
,
4
(
3
), p.
19
.10.3390/ijtpp4030019
3.
Karassik
,
I. J.
,
Messina
,
J. P.
,
Cooper
,
P.
, and
Heald
,
C. C.
,
2001
,
Pump Handbook
,
McGraw-Hill
, New York.
4.
Brown
,
A.
,
1972
, “
A Comparison of Regenerative and Centrifugal Compressors
,”
International Compressor Engineering Conference
, Paper No. 34.
5.
Sixsmith
,
H.
, and
Altmann
,
H.
,
1977
, “
A Regenerative Compressor
,”
ASME J. Eng. Ind.
,
99
(
3
), pp.
637
647
.10.1115/1.3439291
6.
Griffini
,
D.
,
Salvadori
,
S.
,
Carnevale
,
M.
,
Cappelletti
,
A.
,
Ottanelli
,
L.
, and
Martelli
,
F.
,
2015
, “
On the Development of an Efficient Regenerative Compressor
,”
Energy Procedia
,
82
, pp.
252
257
.10.1016/j.egypro.2015.12.030
7.
Yoo
,
I. S.
,
Park
,
M. R.
, and
Chung
,
M. K.
,
2005
, “
Improved Momentum Exchange Theory for Incompressible Regenerative Turbomachines
,”
Proc. Inst. Mech. Eng., Part A
,
219
(
7
), pp.
567
581
.10.1243/095765005X31252
8.
Yoo
,
I. S.
,
Park
,
M. R.
, and
Chung
,
M. K.
,
2006
, “
Hydraulic Design of a Regenerative Flow Pump for an Artificial Heart Pump
,”
Proc. Inst. Mech. Eng., Part A
,
220
(
7
), pp.
699
706
.10.1243/09576509JPE211
9.
Badami
,
M.
, and
Mura
,
M.
,
2010
, “
Theoretical Model With Experimental Validation of a Regenerative Blower for Hydrogen Recirculation in a PEM Fuel Cell System
,”
Energy Convers. Manage.
,
51
(
3
), pp.
553
560
.10.1016/j.enconman.2009.10.022
10.
Insinna
,
M.
,
Salvadori
,
S.
,
Martelli
,
F.
,
Peroni
,
G.
,
Simon
,
G.
,
Dipace
,
A.
, and
Squarcini
,
R.
,
2018
, “
One-Dimensional Prediction and Three-Dimensional CFD Simulation of the Fluid Dynamics of Regenerative Pumps
,”
ASME
Paper No. GT2018-76416.10.1115/GT2018-76416
11.
Baljé
,
O. E.
,
1957
, “
Drag Turbine Performance
,”
ASME
Paper No. 56-AV.10.1115/56-AV
12.
Baljé
,
O. E.
,
1981
,
Turbomachines—A Guide to Design Selection and Theory
,
Wiley-Interscience
,
New York
, p.
528
.
13.
Bartolini
,
C. M.
, and
Salvi
,
D.
,
1996
, “
Experimental Analysis of a Small Prototype of Peripheral Turbine for Decompression of Natural Gas
,”
ASME
Paper No. 96-GT-515.10.1115/96-GT-515
14.
Moradi
,
R.
,
Cioccolanti
,
L.
,
Bocci
,
E.
,
Villarini
,
M.
, and
Renzi
,
M.
,
2019
, “
Numerical Investigation on the Performance of a Regenerative Flow Turbine for Small-Scale Organic Rankine Cycle Systems
,”
ASME J. Eng. Gas Turbines Power
,
141
(
9
), p. 091014.10.1115/1.4044062
15.
Salvadori
,
S.
,
Marini
,
A.
, and
Martelli
,
F.
,
2012
, “
Methodology for the Residual Axial Thrust Evaluation in Multistage Centrifugal Pumps
,”
Eng. Appl. Comput. Fluid Mech.
,
6
(
2
), pp.
271
284
.10.1080/19942060.2012.11015420
16.
Bontempo
,
R.
, and
Manna
,
M.
,
2016
, “
Analysis and Evaluation of the Momentum Theory Errors as Applied to Propellers
,”
AIAA J.
,
54
Issue (
12
), pp.
3840
3848
.10.2514/1.J055131
17.
Griffini
,
D.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2016
, “
Thermo-Hydrodynamic Analysis of Plain and Tilting Pad Bearings
,”
Energy Procedia
,
101
, pp.
2
9
.10.1016/j.egypro.2016.11.001
18.
Yoo
,
I. S.
, 2017, Personal Communication.
19.
Quail
,
F.
,
Scanlon
,
T.
, and
Stickland
,
M.
,
2011
, “
Design Optimisation of a Regenerative Pump Using Numerical and Experimental Techniques
,”
Int. J. Numer. Methods Heat Fluid Flow
,
21
(
1
), pp.
95
111
.10.1108/09615531111095094
20.
Nejadrajabali
,
J.
,
Riasi
,
A.
, and
Nourbakhsh
,
S. A.
,
2016
, “
Flow Pattern Analysis and Performance Improvement of Regenerative Flow Pump Using Blade Geometry Modification
,”
Int. J. Rotating Mach.
,
2016
, pp.
1
16
.10.1155/2016/8628467
21.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
22.
ANSYS,
2019
, “ANSYS® Fluent® Theory Guide, Release 19.4,” ANSYS, Canonsburg, PA.
You do not currently have access to this content.