Abstract

The desire to reduce gas turbine emissions drives the use of design optimization approaches within the combustor design process. However, the relative cost of combustion simulations can prohibit such optimizations from being carried out within an industrial setting. Strategies which can significantly reduce the cost of such studies can enable designers to further improve emissions performance. This paper investigates the application of a multifidelity surrogate modeling approach to the design optimization of a typical gas turbine combustor from a civil airliner engine. Results over three different case studies of varying problem dimensionality indicate that a multifidelity surrogate modeling-based design optimization, whereby the simulation fidelity is varied by adjusting the coarseness of the mesh, can indeed improve optimization performance. These results indicate that such an approach has the potential to significantly reduce design optimization cost while achieving similar, or in some cases superior, design performance.

References

1.
Forrester
,
A.
,
Sóbester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design Via Surrogate Modelling
,
Wiley-Blackwell
,
Hoboken, NJ
.
2.
Toal
,
D.
,
2015
, “
Some Considerations Regarding the Use of Multi-Fidelity Kriging in the Construction of Surrogate Models
,”
Struct. Multidiscip. Optim.
,
51
(
6
), pp.
1223
1245
.10.1007/s00158-014-1209-5
3.
Rogero
,
J. M.
, and
Rubini
,
P. A.
,
2003
, “
Optimization of Combustor Wall Heat Transfer and Pollutant Emissions for Preliminary Design Using Evolutionary Techniques
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
217
(
6
), pp.
605
614
.10.1177/095765090321700607
4.
Wyse
,
S. G.
,
Parks
,
G. T.
, and
Cant
,
R. S.
,
2006
, “
Towards the Multiobjective Optimisation of Gas Turbine Combustors
,”
ASME
Paper No. GT2006-90950.10.1115/GT2006-90950
5.
Saboohi
,
Z.
,
Ommi
,
F.
, and
Akbari
,
M.
,
2019
, “
Multi-Objective Optimization Approach Toward Conceptual Design of Gas Turbine Combustor
,”
Appl. Therm. Eng.
,
148
, pp.
1210
1223
.10.1016/j.applthermaleng.2018.11.082
6.
Torkzadeh
,
M.
,
Bolourchifard
,
F.
, and
Amani
,
E.
,
2016
, “
An Investigation of Air-Swirl Design Criteria for Gas Turbine Combustors Through a Multi-Objective CFD Optimization
,”
Fuel
,
186
, pp.
734
749
.10.1016/j.fuel.2016.09.022
7.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
Hoboken, NJ
.
8.
Amani
,
E.
,
Rahdan
,
P.
, and
Pourvosoughi
,
S.
,
2019
, “
Multi-Objective Optimizations of Air Partitioning in a Gas Turbine Combustor
,”
Appl. Therm. Eng.
,
148
, pp.
1292
1302
.10.1016/j.applthermaleng.2018.12.015
9.
Duchaine
,
F.
,
Morel
,
T.
, and
Gicquel
,
M.
,
2009
, “
Computational-Fluid-Dynamics-Based Kriging Optimization Tool for Aeronautical Combustion Chambers
,”
AIAA J.
,
47
(
3
), pp.
631
645
.10.2514/1.37808
10.
Motsamai
,
O. S.
,
Snyman
,
J. A.
, and
Meyer
,
J. P.
,
2010
, “
Optimization of Gas Turbine Combustor Mixing for Improved Exit Temperature Profile
,”
Heat Transfer Eng.
,
31
(
5
), pp.
402
418
.10.1080/01457630903375319
11.
Laranci
,
P.
,
Zampilli
,
M.
,
D'Amico
,
M.
,
Bartocci
,
P.
,
Bidini
,
G.
, and
Fantozzi
,
F.
,
2017
, “
Geometry Optimization of a Commercial Annular RQL Combustor of a Micro Gas Turbine for Use With Natural Gas and Vegetal Oils
,”
Energy Procedia
,
126
, pp.
875
882
.10.1016/j.egypro.2017.08.298
12.
Briones
,
A. M.
,
Burrus
,
D. L.
,
Sykes
,
J. P.
,
Rankin
,
B. A.
, and
Caswell
,
A. W.
,
2018
, “
Automated Design Optimization of a Small-Scale High-Swirl Cavity-Stabilized Combustor
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121509
.10.1115/1.4040821
13.
Thomas
,
N.
,
Rumpfkeil
,
M. P.
,
Briones
,
A.
,
Erdmann
,
T. J.
, and
Rankin
,
B. A.
,
2019
, “
Multiple-Objective Optimization of a Subsonic Small-Scale Cavity-Stabilized Combustor
,”
AIAA
Paper No. 2019-0990.10.2514/6.2019-0990
14.
Wankhede
,
M.
,
Bressloff
,
N.
, and
Keane
,
A.
,
2011
, “
Combustor Design Optimization Using co-Kriging of Steady and Unsteady Turbulent Combustion
,”
ASME J. Eng. Gas Turbines Power
,
133
(
12
), p.
121504
.10.1115/1.4004155
15.
Zhang
,
X.
,
Toal
,
D.
,
Bressloff
,
N.
,
Keane
,
A.
,
Witham
,
F.
,
Gregory
,
J.
,
Stow
,
S.
,
Goddard
,
C.
,
Zedda
,
M.
, and
Rodgers
,
M.
,
2014
, “
Prometheus: A Geometry-Centric Optimisation System for Combustor Design
,”
ASME
Paper No. GT2014-25886.10.1115/GT2014-25886
16.
Zhang
,
X.
,
Toal
,
D. J. J.
,
Keane
,
A. J.
,
Witham
,
F.
,
Gregory
,
J.
,
Ravikanti
,
M.
,
Aurifeille
,
E.
,
Stow
,
S.
,
Rogers
,
M.
, and
Zedda
,
M.
,
2016
, “
Isothermal Combustor Prediffuser and Fuel Injector Feed Arm Design Optimization Using the Prometheus Design System
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
061504
.10.1115/1.4031711
17.
Toal
,
D.
,
Zhang
,
X.
,
Keane
,
A.
,
Stow
,
S.
,
Zedda
,
M.
,
Witham
,
F.
, and
Gregory
,
J.
,
2017
, “
Combustor Design Optimization Using the Prometheus Design System
,”
23rd ISABE Conference
, Manchester, UK, Sept. 3–8, Paper No. 2017–21394.https://www.researchgate.net/publication/319543050_Combustor_design_optimization_using_the_Prometheus_Design_System
18.
Jones
,
D.
,
2001
, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,”
J. Global Optim.
,
21
(
4
), pp.
345
383
.10.1023/A:1012771025575
19.
Forrester
,
A.
,
Keane
,
A.
, and
Bressloff
,
N.
,
2006
, “
Design and Analysis of ‘Noisy’ Computer Experiments
,”
AIAA J.
,
44
(
10
), pp.
2331
2339
.10.2514/1.20068
20.
Toal
,
D.
,
Bressloff
,
N.
,
Keane
,
A.
, and
Holden
,
C.
,
2011
, “
The Development of a Hybridized Particle Swarm for Kriging Hyperparameter Tuning
,”
Eng. Optim.
, 43(6), pp.
675
699
.10.1080/0305215X.2010.508524
21.
Toal
,
D.
,
Forrester
,
A.
,
Bressloff
,
N.
,
Keane
,
A.
, and
Holden
,
C.
,
2009
, “
An Adjoint for Likelihood Maximization
,”
Proc. R. Soc. A
,
465
(
2111
), pp.
3267
3287
.10.1098/rspa.2009.0096
22.
Kennedy
,
M.
, and
O'Hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.10.1093/biomet/87.1.1
23.
Toal
,
D.
, and
Keane
,
A.
,
2011
, “
Efficient Multi-Point Aerodynamic Design Optimization Via co-Kriging
,”
J. Aircr.
,
48
(
5
), pp.
1685
1695
.10.2514/1.C031342
24.
Anand
,
M. S.
,
Eggels
,
R.
,
Staufer
,
M.
,
Zedda
,
M.
, and
Zhu
,
J.
,
2013
, “
An Advanced Unstructured-Grid Finite Volume Design System for Gas Turbine Combustion Analysis
,”
ASME
Paper No. GTINDIA2013-3537.10.1115/GTINDIA2013-3537
You do not currently have access to this content.