Abstract

Exhaust gas recirculation (EGR) in spark-ignited (SI) engines is a key technique to reduce in-cylinder NOx production by decreasing the combustion temperature. The major species of the exhaust gas in rich combustion of natural gas are hydrogen and carbon monoxide, which can subsequently be recirculated to the cylinders using EGR. In this study, the effect of hydrogen and carbon monoxide addition to methane on laminar burning velocity and flame morphology is investigated. Due to the broad flammability limit and high burning velocity of hydrogen compared to methane, this addition to the gaseous mixture leads to an increase in burning velocity, less emissions production, and a boost to the thermal efficiency of internal combustion engines. Premixed CH4–H2–CO–air flames are experimentally investigated using an optically accessible constant volume combustion chamber (CVCC) accompanied with a high-speed Z-type Schlieren imaging system. Furthermore, a numerical code is applied to quantify the laminar burning velocity based on the pressure rise during flame propagation within the CVCC. According to the empirical and numerical results, the addition of hydrogen and carbon monoxide enhances laminar burning velocity while influencing the flame structure and development.

References

1.
Pierpont
,
D.
,
Montgomery
,
D.
, and
Reitz
,
R. D.
,
1995
, “
Reducing Particulate and NOx Using Multiple Injections and EGR in a DI Diesel
,”
SAE
Paper No. 950217.10.4271/950217
2.
Tabata
,
M.
,
Yamamoto
,
T.
, and
Fukube
,
T.
,
1995
, “
Improving NOx and Fuel Economy for Mixture Injected SI Engine With EGR
,”
SAE
Paper No. 950684.10.4271/950684
3.
Szwaja
,
S.
,
Ansari
,
E.
,
Rao
,
S.
,
Szwaja
,
M.
,
Grab-Rogalinski
,
K.
,
Naber
,
J. D.
, and
Pyrc
,
M.
,
2018
, “
Influence of Exhaust Residuals on Combustion Phases, Exhaust Toxic Emission and Fuel Consumption From a Natural Gas Fueled Spark-Ignition Engine
,”
Energy Convers. Manage.
,
165
, pp.
440
446
.10.1016/j.enconman.2018.03.075
4.
Morovatiyan
,
M. R.
, and
Hosseini
,
V.
,
2014
, “
Development of a 3D CFD Model to Analyze Gas Exchange Process Into Intake Manifold of an iVVT Engine
,”
J. Engine Res.
,
36
(
36
), pp.
51
60
.
5.
Darzi
,
M.
,
2018
, “
Continuously Varying Exhaust Outlet Diameter to Improve Efficiency and Emissions of a Small SI Natural Gas Two-Stroke Engine by Internal EGR
,”
SAE
Paper No. 2018-01-0985.10.4271/2018-01-0985
6.
Grandin
,
B.
,
Ångström
,
H.-E.
,
Stålhammar
,
P.
, and
Olofsson
,
E.
,
1998
, “
Knock Suppression in a Turbocharged SI Engine by Using Cooled EGR
,”
SAE
Paper No. 982476.10.4271/982476
7.
Alger
,
T.
,
Chauvet
,
T.
, and
Dimitrova
,
Z.
,
2008
, “
Synergies Between High EGR Operation and GDI Systems
,”
SAE Int. J. Engines
,
1
(
1
), pp.
101
114
.10.4271/2008-01-0134
8.
Duchaussoy
,
Y.
,
Lefebvre
,
A.
, and
Bonetto
,
R.
,
2003
, “
Dilution Interest on Turbocharged SI Engine Combustion
,”
SAE
Paper No. 2003-01-0629.10.4271/2003-01-0629
9.
Cairns
,
A.
,
Blaxill
,
H.
, and
Irlam
,
G.
,
2006
, “
Exhaust Gas Recirculation for Improved Part and Full Load Fuel Economy in a Turbocharged Gasoline Engine
,”
SAE
Paper No. 2006-01-0047.10.4271/2006-01-0047
10.
Hedge
,
M.
,
Weber
,
P.
,
Gingrich
,
J.
,
Alger
,
T.
, and
Khalek
,
I.
,
2011
, “
Effect of EGR on Particle Emissions From a GDI Engine
,”
SAE Int. J. Engines
,
4
(
1
), pp.
650
666
.10.4271/2011-01-0636
11.
Alger
,
T.
,
Gingrich
,
J.
,
Khalek
,
I. A.
, and
Mangold
,
B.
,
2010
, “
The Role of EGR in PM Emissions From Gasoline Engines
,”
SAE Int. J. Fuels Lubr.
,
3
(
1
), pp.
85
98
.10.4271/2010-01-0353
12.
Chadwell
,
C.
,
Alger
,
T.
,
Zuehl
,
J.
, and
Gukelberger
,
R.
,
2014
, “
A Demonstration of Dedicated EGR on a 2.0 L GDI Engine
,”
SAE Int. J. Engines
,
7
(
1
), pp.
434
447
.10.4271/2014-01-1190
13.
Randolph
,
E.
,
Gukelberger
,
R.
,
Alger
,
T.
,
Briggs
,
T.
,
Chadwell
,
C.
, and
Bosquez
,
A.
, Jr.
,
2017
, “
Methanol Fuel Testing on Port Fuel Injected Internal-Only EGR, HPL-EGR and D-EGR® Engine Configurations
,”
SAE Int. J. Fuels Lubr.
,
10
(
3
), pp.
718
727
.10.4271/2017-01-2285
14.
D'Andrea
,
T.
,
Henshaw
,
P.
, and
Ting
,
D.-K.
,
2004
, “
The Addition of Hydrogen to a Gasoline-Fuelled SI Engine
,”
Int. J. Hydrogen Energy
,
29
(
14
), pp.
1541
1552
.10.1016/j.ijhydene.2004.02.002
15.
Goldwitz
,
J. A.
,
2004
, “Combustion Optimization in a Hydrogen-Enhanced Lean Burn SI Engine,”
MS thesis
,
Massachusetts Institute of Technology, Department of Mechanical Engineering
,
Cambridge, MA
.https://core.ac.uk/download/pdf/4393937.pdf
16.
Gerty
,
M. D.
, and
Heywood
,
J. B.
,
2006
, “
An Investigation of Gasoline Engine Knock Limited Performance and the Effects of Hydrogen Enhancement
,”
SAE
Paper No. 2006-01-0228.10.4271/2006-01-0228
17.
Askari
,
O.
,
Wang
,
Z.
,
Vien
,
K.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2017
, “
On the Flame Stability and Laminar Burning Speeds of Syngas/O2/He Premixed Flame
,”
Fuel
,
190
, pp.
90
103
.10.1016/j.fuel.2016.11.042
18.
Morovatiyan
,
M.
,
Shahsavan
,
M.
,
Aguilar
,
J.
, and
Mack
,
J. H.
,
2019
, “
The Effect of Working Fluids on Premixed Hydrogen Combustion in a Constant Volume Combustion Chamber
,”
11th U.S. National Combustion Meeting
, Pasadena, CA, Mar. 24–27.10.31224/osf.io/gz3db
19.
Zare
,
S.
,
Roy
,
S.
,
Maadi
,
A. E.
, and
Askari
,
O.
,
2019
, “
An Investigation on Laminar Burning Speed and Flame Structure of Anisole-Air Mixture
,”
Fuel
,
244
, pp.
120
131
.10.1016/j.fuel.2019.01.149
20.
Xiouris
,
C.
,
Ye
,
T.
,
Jayachandran
,
J.
, and
Egolfopoulos
,
F. N.
,
2016
, “
Laminar Flame Speeds Under Engine-Relevant Conditions: Uncertainty Quantification and Minimization in Spherically Expanding Flame Experiments
,”
Combust. Flame
,
163
, pp.
270
283
.10.1016/j.combustflame.2015.10.003
21.
Morovatiyan
,
M.
,
Shahsavan
,
M.
,
Aguilar
,
J.
, and
Mack
,
J. H.
,
2021
, “
Effect of Argon Concentration on Laminar Burning Velocity and Flame Speed of Hydrogen Mixtures in a Constant Volume Combustion Chamber
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032301
.10.1115/1.4048019
22.
Keck
,
J. C.
,
1982
, “
Turbulent Flame Structure and Speed in Spark-Ignition Engines
,”
Symp. (Int.) Combust.
,
19
(
1
), pp.
1451
1466
.10.1016/S0082-0784(82)80322-6
23.
Menon
,
S.
, and
Kerstein
,
A. R.
,
1992
, “
Stochastic Simulation of the Structure and Propagation Rate of Turbulent Premixed Flames
,”
Symp. (Int.) Combust.
,
24
(
1
), pp.
443
450
.10.1016/S0082-0784(06)80057-3
24.
Shy
,
S.
,
Ronney
,
P.
,
Buckley
,
S.
, and
Yakhot
,
V.
,
1992
, “
Experimental Simulation of Premixed Turbulent Combustion Using Aqueous Autocatalytic Reactions
,”
Symp. (Int.) Combust.
,
24
(
1
), pp.
543
551
.10.1016/S0082-0784(06)80069-X
25.
Dong
,
Y.
,
Holley
,
A. T.
,
Andac
,
M. G.
,
Egolfopoulos
,
F. N.
,
Davis
,
S. G.
,
Middha
,
P.
, and
Wang
,
H.
,
2005
, “
Extinction of Premixed H2/Air Flames: Chemical Kinetics and Molecular Diffusion Effects
,”
Combust. Flame
,
142
(
4
), pp.
374
387
.10.1016/j.combustflame.2005.03.017
26.
Dooley
,
S.
,
Burke
,
M. P.
,
Chaos
,
M.
,
Stein
,
Y.
,
Dryer
,
F. L.
,
Zhukov
,
V. P.
,
Finch
,
O.
,
Simmie
,
J. M.
, and
Curran
,
H. J.
,
2010
, “
Methyl Formate Oxidation: Speciation Data, Laminar Burning Velocities, Ignition Delay Times, and a Validated Chemical Kinetic Model
,”
Int. J. Chem. Kinetics
,
42
(
9
), pp.
527
549
.10.1002/kin.20512
27.
Morovatiyan
,
M.
,
Shahsavan
,
M.
, and
Shen
,
M.
, “
Investigation of the Effect of Electrode Surface Roughness on Spark Ignition
,”
ASME
Paper No. ICEF2018-9691.10.1115/ICEF2018-9691
28.
Trochim
,
W. M.
, and
Donnelly
,
J. P.
,
2001
,
Research Methods Knowledge Base
,
Atomic Dog Publishing
,
Cincinnati, OH
.
29.
Chen
,
Z.
,
Burke
,
M. P.
, and
Ju
,
Y.
,
2009
, “
Effects of Compression and Stretch on the Determination of Laminar Flame Speeds Using Propagating Spherical Flames
,”
Combust. Theory Model.
,
13
(
2
), pp.
343
364
.10.1080/13647830802632192
30.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1982
, “
Burning Velocities of Mixtures of Air With Methanol, Isooctane, and Indolene at High Pressure and Temperature
,”
Combust. Flame
,
48
, pp.
191
210
.10.1016/0010-2180(82)90127-4
31.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2018
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Version 2.4.0 ed.
”.https://zenodo.org/record/1174508#.X618BvMzbZ4
32.
Chase
,
J. M. W.
,
1998
,
NIST-JANAF Thermochemical Tables
,
American Chemical Society; American Institute of Physics for the National Institute of Standards and Technology
,
Washington, DC
.
33.
Carlanescu
,
R.
,
Mangra
,
T.
,
Kuncser
,
A.
,
Florean
,
R. F.
, and
Enache
,
M.
,
2017
, “
The Analysis of the Combustion of Premixed Methane-Hydrogen Mixtures Stabilised by an Inovative Swirl Injector
,”
Tenth Mediterranean Combustion Symposium
, Naples, Italy, Sept. 17–21.https://www.researchgate.net/publication/326692878_The_Analysis_Of_The_Combustion_Of_Premixed_Methane-Hydrogen_Mixtures_Stabilised_By_An_Innovative_Swirl_Injector
34.
Carlanescu
,
R.
,
Prisecaru
,
T.
,
Prisecaru
,
M.
, and
Soriga
,
I.
,
2018
, “
Swirl Injector for Premixed Combustion of Hydrogen–Methane Mixtures
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072002
.10.1115/1.4039267
35.
Di Iorio
,
S.
,
Sementa
,
P.
, and
Vaglieco
,
B. M.
,
2014
, “
Experimental Investigation on the Combustion Process in a Spark Ignition Optically Accessible Engine Fueled With Methane/Hydrogen Blends
,”
Int. J. Hydrogen Energy
,
39
(
18
), pp.
9809
9823
.10.1016/j.ijhydene.2014.04.065
36.
Wang
,
Z.
,
Bai
,
Z.
,
Yu
,
G.
,
Yelishala
,
S.
, and
Metghalchi
,
H.
,
2019
, “
The Critical Pressure at the Onset of Flame Instability of Syngas/Air/Diluent Outwardly Expanding Flame at Different Initial Temperatures and Pressures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082207
.10.1115/1.4042720
You do not currently have access to this content.