Abstract

This article addresses the vibrational behavior of bladed disk assemblies with nonlinear shroud coupling under random excitation. In order to increase the service life and safety of turbine blades, intense calculations are carried out to predict the vibrational behavior. The use of friction dampers for energy dissipation and suppression of large amplitudes makes the mechanical system nonlinear, which complicates the calculations. Depending on the stage, different types of excitation can occur in a turbine, from clearly defined deterministic to random excitation. So far, the latter problem has only been dealt with to a limited extent in the literature on turbomachinery. Nevertheless, there are in general different approaches and methods to address this problem most of which are strongly restricted with regard to the number of degrees-of-freedom (DOF). The focus of this paper is the application of an equivalent linearization method (ELM) to calculate the stochastic response of an academic model of a bladed disk assembly under random excitation. The nonlinear contact is modeled both with an elastic Coulomb-slider and a Bouc–Wen formulation to reproduce the hysteretic character of a friction nonlinearity occurring in the presence of a friction damper. Both the excitation and the response are limited to mean-free, stationary stochastic processes, which means that the stochastic moments do not change over time. Unlike previous papers on this topic, the calculations are performed on a full bladed disk assembly in which each segment is approximated with several degrees-of-freedom.

References

1.
Kumar
,
P.
, and
Narayanan
,
S.
,
2009
, “
Nonlinear Stochastic Dynamics, Chaos, and Reliability Analysis for a Single Degree of Freedom Model of a Rotor Blade
,”
ASME J. Eng. Gas Turbines Power
,
131
(
1
), p.
012506
.10.1115/1.2967720
2.
Kumar
,
P.
, and
Narayanan
,
S.
,
2010
, “
Modified Path Integral Solution of Fokker–Planck Equation: Response and Bifurcation of Nonlinear Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
1
), p.
011004
.10.1115/1.4000312
3.
Narayanan
,
S.
, and
Kumar
,
P.
,
2012
, “
Numerical Solutions of Fokker–Planck Equation of Nonlinear Systems Subjected to Random and Harmonic Excitations
,”
Probab. Eng. Mech.
,
27
(
1
), pp.
35
46
.10.1016/j.probengmech.2011.05.006
4.
Förster
,
A.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2019
, “
Approximate Solution of the Fokker–Planck Equation for a Multidegree of Freedom Frictionally Damped Bladed Disk Under Random Excitation
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011004
.10.1115/1.4040740
5.
Förster
,
A.
,
Scheidt
,
L. P.-V.
, and
Wallaschek
,
J.
,
2020
, “
Forced Response of Nonlinear Systems Under Combined Harmonic and Random Excitation
,”
Nonlinear Structures and Systems
, Vol.
1
(Vol. 15 of
Conference Proceedings of the Society for Experimental Mechanics Series
),
G.
Kerschen
,
M. R. W.
Brake
, and
L.
Renson
, eds.,
Springer International Publishing and Imprint, Springer
,
Cham
, pp.
65
80
.
6.
Higham
,
D. J.
,
2001
, “
An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations
,”
SIAM Rev.
,
43
(
3
), pp.
525
546
.10.1137/S0036144500378302
7.
Booton
,
R. C.
,
1954
, “
Nonlinear Control Systems With Random Inputs
,”
IRE Trans. Circuit Theory
,
1
(
1
), pp.
9
18
.10.1109/TCT.1954.6373354
8.
Caughey
,
T. K.
,
1959
, “
Response of a Nonlinear String to Random Loading
,”
ASME J. Appl. Mech.
,
26
(
3
), pp.
341
344
.https://resolver.caltech.edu/CaltechAUTHORS:CAUjam59a
9.
Caughey
,
T. K.
,
1959
, “
Response of Van Der Pol's Oscillator to Random Excitation
,”
ASME J. Appl. Mech.
,
26
(
3
), pp.
345
348
.https://core.ac.uk/download/pdf/216098957.pdf
10.
Caughey
,
T. K.
,
1963
, “
Equivalent Linearization Techniques
,”
J. Acoust. Soc. Am.
,
35
(
11
), pp.
1706
1711
.10.1121/1.1918794
11.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
2003
, “
Random Vibration and Statistical Linearization
,”
Dover Books on Engineering
,
Dover Publication
,
Mineola, NY
.
12.
Socha
,
L.
,
2005
, “
Linearization in Analysis of Nonlinear Stochastic Systems: Recent Results—Part I: Theory
,”
J. Eng. Mech.
,
58
(
3
), pp.
178
205
.10.1115/1.1896368
13.
Socha
,
L.
,
2005
, “
Linearization in Analysis of Nonlinear Stochastic Systems, Recent Results—Part II: Applications
,”
Int. J. Non-Linear Mech.
,
58
(
5
), pp.
303
315
.10.1115/1.1995715
14.
Sinha
,
A.
,
1987
, “
Friction Damping of Random Vibration in Gas Turbine Engine Airfoils
,”
ASME
Paper No. 87-GT-44.10.1115/87-GT-44
15.
Cha
,
D.
, and
Sinha
,
A.
,
2003
, “
Computation of the Optimal Normal Load of a Friction Damper Under Different Types of Excitation
,”
ASME J. Eng. Gas Turbines Power
,
125
(
4
), pp.
1042
1049
.10.1115/1.1584474
16.
Cha
,
D.
, and
Sinha
,
A.
,
2006
, “
Statistics of Responses of a Mistuned and Frictionally Damped Bladed Disk Assembly Subjected to White Noise and Narrow Band Excitations
,”
Probab. Eng. Mech.
,
21
(
4
), pp.
384
396
.10.1016/j.probengmech.2006.01.001
17.
Cha
,
D.
,
2018
, “
Performance of Friction Dampers in Geometric Mistuned Bladed Disk Assembly Subjected to Random Excitations
,”
J. Sound Vib.
,
426
, pp.
34
53
.10.1016/j.jsv.2018.04.012
18.
Fantetti
,
A.
,
Tamatam
,
L. R.
,
Volvert
,
M.
,
Lawal
,
I.
,
Liu
,
L.
,
Salles
,
L.
,
Brake
,
M.
,
Schwingshackl
,
C. W.
, and
Nowell
,
D.
,
2019
, “
The Impact of Fretting Wear on Structural Dynamics: Experiment and Simulation
,”
Tribol. Int.
,
138
, pp.
111
124
.10.1016/j.triboint.2019.05.023
19.
Petrov
,
E. P.
,
2008
, “A Sensitivity-Based Method for Direct Stochastic Analysis of Nonlinear Forced Response for Bladed Disks With Friction Interfaces,”
ASME J. Eng. Gas Turbines Power
, 130(2), p.
022503
.10.1115/1.2772634
20.
Didier
,
J.
,
Sinou
,
J.-J.
, and
Faverjon
,
B.
,
2013
, “
Nonlinear Vibrations of a Mechanical System With Non-Regular Nonlinearities and Uncertainties
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
11
), pp.
3250
3270
.10.1016/j.cnsns.2013.03.005
21.
Philippe
,
J.
,
Thouverez
,
F.
,
Blanc
,
L.
, and
Gruin
,
M.
,
2015
, “
Vibratory Behavior Prediction of a Mistuned Clustered Stator Vane: Non-Intrusive Stochastic Methods
,”
ASME
Paper No. GT2015-42358.10.1115/GT2015-42358
22.
Panunzio
,
A. M.
,
Salles
,
L.
,
Schwingshackl
,
C.
, and
Gola
,
M.
,
2015
, “
Asymptotic Numerical Method and Polynomial Chaos Expansion for the Study of Stochastic Non-Linear Normal Modes
,”
ASME
Paper No. GT2015-43560.10.1115/GT2015-43560
23.
Siewert
,
C.
,
McCracken
,
J. R.
, and
Thiemann
,
T.
, “
Advanced Last Stage Blade for Nuclear Power Plant Upgrades
,”
ASME
Paper No. GT2019-90860.10.1115/GT2019-90860
24.
Bouc
,
R.
,
1971
, “
A Mathematical Model for Hysteresis
,”
Acta Acust. United Acust.
,
24
(
1
), pp.
16
25
.https://www.ingentaconnect.com/content/dav/aaua/1971/00000024/00000001/art00004
25.
Wen
,
Y. K.
,
1976
, “
Method for Random Vibration of Hysteretic Systems
,”
J. Eng. Mech. Div.
,
102
(
2
), pp.
249
263
.https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0006630
26.
Ma
,
F.
,
Zhang
,
H.
,
Bockstedte
,
A.
,
Foliente
,
G. C.
, and
Paevere
,
P.
,
2004
, “
Parameter Analysis of the Differential Model of Hysteresis
,”
ASME J. Appl. Mech.
,
71
(
3
), pp.
342
349
.10.1115/1.1668082
27.
Guo
,
K.
,
Zhang
,
X.
,
Li
,
H.
,
Hua
,
H.
, and
Meng
,
G.
,
2008
, “
A New Dynamical Friction Model
,”
Int. J. Mod. Phys. B
,
22
(
08
), pp.
967
980
.10.1142/S0217979208039010
28.
Heinrich
,
W.
, and
Hennig
,
K.
,
1978
,
Zufallsschwingungen Mechanischer Systeme
, 1st ed.,
Vieweg+Teubner Verlag
,
Reihe Wissenschaft, Wiesbaden
.
29.
Wirsching
,
P. H.
,
Paez
,
T. L.
, and
Ortiz
,
K.
,
2006
,
Random Vibrations: Theory and Practice
,
Dover Publications
,
Mineola, NY
.
30.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
.10.1007/s11831-016-9183-2
31.
Hurty
,
W. C.
,
1965
, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA J.
,
3
(
4
), pp.
678
685
.10.2514/3.2947
32.
Bampton
,
M. C. C.
, and
Craig
,
J. R. R.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
33.
Bladh
,
R.
,
2001
, “
Efficient Predictions of the Vibratory Response of Mistuned Bladed Disks by Reduced Order Modeling
,”
Theses
,
University of Michigan
,
Ann Arbor, MI
.https://tel.archives-ouvertes.fr/tel-00358168/document
34.
Wen
,
Y. K.
,
1980
, “
Equivalent Linearization for Hysteretic Systems Under Random Excitation
,”
ASME J. Appl. Mech.
,
47
(
1
), pp.
150
154
.10.1115/1.3153594
You do not currently have access to this content.