Abstract

Using steam as a heat carrier and working media has merits to increase electric efficiency up to 60% and decrease NOx emission to single-digit compared to dry gas turbine cycles. These attribute primarily to the physical properties of steam as having high heat capacity to reduce local flame temperature, and hence reduce emissions by inhibiting the thermal NOx forward reaction rate. In this work, ultrahigh steam content with a steam-to-air mass ratio of up to 40% is premixed with methane–air mixture before entering into a swirl-stabilized high pressure (HP)-burner for combustion. A significant change of flame from V-shape (attached) to M shape (detached) is observed through a transparent combustion chamber whilst changing steam content. The measurement of chemiluminescence OH* is conducted with an intensified CCD-camera bandpass filtered at 320 nm. Following these measurements, large eddy simulation (LES) is used to capture reacting flow features. Reasonably well agreements between experimental data and numerical results are obtained for both attached and detached flames in terms of the OH* distribution. Slight inconsistency of OH* intensity is mainly due to uncollected wall temperature, which leads to either over- or underprediction of chemical reaction rate depending on the experimental flame positions. Distributed flame front is clearly identified with LES for wet methane combustion associated with 35% steam-to-air ratio corresponding to a high Karlovitz number flame. Slightly unstable combustion is observed when the steam-to-air ratio exceeds 40% featuring an onset of flame blow-off. In addition, interaction between precessing vortex core (PVC) and the flame is presented for different level of steam dilution, and conclusions are drawn regarding the flame stabilization. The in-depth understanding of the ultrawet combustion is an important step toward the use of sustainable, steam-diluted biosyngas for electricity production.

References

1.
Bartlett
,
M. A.
, and
Westermark
,
M. O.
,
2005
, “
A Study of Humidified Gas Turbines for Short-Term Realization in Midsized Power Generation—Part I: Nonintercooled Cycle Analysis
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
91
99
.10.1115/1.1788683
2.
Lindquist
,
T.
,
2002
, “
Evaluation, Experience and Potential of Gas Turbine Based Cycles With Humidification
,”
Ph.D. thesis
,
Lund University
,
Lund, Sweden
.https://portal.research.lu.se/portal/en/publications/evaluation-experience-and-potential-of-gas-turbine-based-cycles-with-humidification(c0c8aeb0-4a23-4257-a534-c30c7d2883ed)/export.html
3.
Albin
,
E.
,
Nawroth
,
H.
,
Göke
,
S.
,
d'Angelo
,
Y.
, and
Paschereit
,
C. O.
,
2013
, “
Experimental Investigation of Burning Velocities of Ultra-Wet Methane–Air–Steam Mixtures
,”
Fuel Process. Technol.
,
107
, pp.
27
35
.10.1016/j.fuproc.2012.06.027
4.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
5.
Duwig
,
C.
,
Stankovic
,
D.
,
Fuchs
,
L.
,
Li
,
G.
, and
Gutmark
,
E.
,
2007
, “
Experimental and Numerical Study of Flameless Combustion in a Model Gas Turbine Combustor
,”
Combust. Sci. Technol.
,
180
(
2
), pp.
279
295
.10.1080/00102200701739164
6.
Cavaliere
,
A.
, and
de Joannon
,
M.
,
2004
, “
Mild Combustion
,”
Prog. Energy Combust. Sci.
,
30
(
4
), pp.
329
366
.10.1016/j.pecs.2004.02.003
7.
Perpignan
,
A. A.
,
Rao
,
A. G.
, and
Roekaerts
,
D. J.
,
2018
, “
Flameless Combustion and Its Potential Towards Gas Turbines
,”
Prog. Energy Combust. Sci.
,
69
, pp.
28
62
.10.1016/j.pecs.2018.06.002
8.
Reichel
,
T. G.
,
Goeckeler
,
K.
, and
Paschereit
,
O.
,
2015
, “
Investigation of Lean Premixed Swirl-Stabilized Hydrogen Burner With Axial Air Injection Using OH-PLIF Imaging
,”
ASME
Paper No. GT2015-42491.10.1115/GT2015-42491
9.
Kuhn
,
P.
,
Terhaar
,
S.
,
Reichel
,
T.
, and
Paschereit
,
C. O.
,
2015
, “
Design and Assessment of a Fuel-Flexible Low Emission Combustor for Dry and Steam-Diluted Conditions
,”
ASME
Paper No. GT2015-43375.10.1115/GT2015-43375
10.
Stathopoulos
,
P.
,
Kuhn
,
P.
,
Wendler
,
J.
,
Tanneberger
,
T.
,
Terhaar
,
S.
,
Paschereit
,
C. O.
,
Schmalhofer
,
C.
,
Griebel
,
P.
, and
Aigner
,
M.
,
2017
, “
Emissions of a Wet Premixed Flame of Natural Gas and a Mixture With Hydrogen at High Pressure
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041507
.10.1115/1.4034687
11.
Reichel
,
T. G.
, and
Paschereit
,
C. O.
,
2017
, “
Interaction Mechanisms of Fuel Momentum With Flashback Limits in Lean-Premixed Combustion of Hydrogen
,”
Int. J. Hydrogen Energy
,
42
(
7
), pp.
4518
4529
.10.1016/j.ijhydene.2016.11.018
12.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2018
, “
Flashback Resistance and Fuel–Air Mixing in Lean Premixed Hydrogen Combustion
,”
J. Propul. Power
,
34
(
3
), pp.
690
701
.10.2514/1.B36646
13.
Goke
,
S.
,
Terhaar
,
S.
,
Schimek
,
S.
,
Gockeler
,
K.
, and
Paschereit
,
C. O.
,
2011
, “
Combustion of Natural Gas, Hydrogen and Bio-Fuels at Ultra-Wet Conditions
,”
ASME
Paper No. GT2011-45696.10.1115/GT2011-45696
14.
Krüger
,
O.
,
Duwig
,
C.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2012
, “
Ultra-Wet Operation of a Hydrogen Fueled GT Combustor: Large Eddy Simulation Employing Detailed Chemistry
,” Proceedings of the Seventh International Conference on Computational Fluid Dynamics (
ICCFD7
), Big Island, Hawaii, July 9–13, Paper No. ICCFD7-3403https://www.semanticscholar.org/paper/Ultra-Wet-Operation-of-a-Hydrogen-Fueled-GT-%3A-Large-Kr%C3%BCger-Duwig/e8de190419826e8612bea92c9d0a8b43e9ec546f.
15.
Krüger
,
O.
,
Terhaar
,
S.
,
Paschereit
,
C. O.
, and
Duwig
,
C.
,
2013
, “
Large Eddy Simulations of Hydrogen Oxidation at Ultra-Wet Conditions in a Model Gas Turbine Combustor Applying Detailed Chemistry
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021501
.10.1115/1.4007718
16.
Krüger
,
O.
,
Duwig
,
C.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2014
, “
Large Eddy Simulations of Methane Oxidation at Ultra-Wet Conditions in a Model Gas Turbine Combustor Applying Detailed Chemistry
,”
J. Fluid Sci. Technol.
,
9
(
3
), pp.
JFST0040
JFST0040
.10.1299/jfst.2014jfst0040
17.
Mira
,
D.
,
Lehmkuhl
,
O.
,
Stathopoulos
,
P.
,
Tanneberger
,
T.
,
Reichel
,
T. G.
,
Paschereit
,
C. O.
,
Vázquez
,
M.
, and
Houzeaux
,
G.
,
2018
, “
Numerical Investigation of a Lean Premixed Swirl-Stabilized Hydrogen Combustor and Operational Conditions Close to Flashback
,”
ASME
Paper No. GT2018-76229.10.1115/GT2018-76229
18.
Tanneberger
,
T.
,
Reichel
,
T. G.
,
Krüger
,
O.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Numerical Investigation of the Flow Field and Mixing in a Swirl-Stabilized Burner With a Non-Swirling Axial Jet
,”
ASME
Paper No. GT2015-43382.10.1115/GT2015-43382
19.
Beér
,
J. M.
, and
Chigier
,
N. A.
,
1972
,
Combustion Aerodynamics
, Applied Science Publishers Limited,
New York
.
20.
Jaffe
,
S. M.
,
Larjo
,
J.
, and
Henberg
,
R.
,
1991
, “
Abel Inversion Using the Fast Fourier Transform
,”
10th International Symposium on Plasma Chemistry
, Bochum, Germany, Aug. 4–9, pp.
89
120
.
21.
Sankaran
,
R.
,
Hawkes
,
E. R.
,
Chen
,
J. H.
,
Lu
,
T.
, and
Law
,
C. K.
,
2007
, “
Structure of a Spatially Developing Turbulent Lean Methane–Air Bunsen Flame
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1291
1298
.10.1016/j.proci.2006.08.025
22.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2009
,
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,
Caltech
,
Pasadena, CA
.
23.
The OpenFOAM Foundation,
2019
, “
OpenFOAM
,”
OpenFOAM Foundation, London, UK, accessed Nov. 23, 2019,
https://openfoam.org/
24.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
25.
Duwig
,
C.
, and
Iudiciani
,
P.
,
2014
, “
Large Eddy Simulation of Turbulent Combustion in a Stagnation Point Reverse Flow Combustor Using Detailed Chemistry
,”
Fuel
,
123
, pp.
256
273
.10.1016/j.fuel.2014.01.072
26.
Cifuentes
,
L.
,
Fooladgar
,
E.
, and
Duwig
,
C.
,
2018
, “
Chemical Explosive Mode Analysis for a Jet-in-Hot-Coflow Burner Operating in MILD Combustion
,”
Fuel
,
232
, pp.
712
723
.10.1016/j.fuel.2018.05.171
27.
Kathrotia
,
T.
,
2011
, “
Reaction Kinetics Modeling of OH*, CH*, and C2* Chemiluminescence
,”
Ph.D. thesis
,
Heidelberg University
,
Germany
. https://www.researchgate.net/publication/225021959_Reaction_Kinetics_Modeling_of_OH_CH_and_C2_Chemiluminescence
28.
Borghi
,
R.
,
1985
, “
On the Structure and Morphology of Turbulent Premixed Flames
,”
Recent Advances in the Aerospace Sciences
,
Springer
,
Boston, MA
, pp.
117
138
.
29.
Peters
,
N.
,
1988
, “
Laminar Flamelet Concepts in Turbulent Combustion
,”
Symp. (Int.) Combust.
,
21
(
1
), pp.
1231
1250
.10.1016/S0082-0784(88)80355-2
30.
Duwig
,
C.
, and
Dunn
,
M. J.
,
2013
, “
Large Eddy Simulation of a Premixed Jet Flame Stabilized by a Vitiated Co-Flow: Evaluation of Auto-Ignition Tabulated Chemistry
,”
Combust. Flame
,
160
(
12
), pp.
2879
2895
.10.1016/j.combustflame.2013.06.011
31.
Jasak
,
H.
,
1996
, “
Error Analysis and Estimation for the Finite Volume Method With Applications to Fluid Flows
,”
Ph.D. thesis
,
Imperial College London
,
UK
.https://www.researchgate.net/publication/230605842_Error_Analysis_and_Estimation_for_the_Finite_Volume_Method_With_Applications_to_Fluid_Flows
32.
Leonard
,
B. P.
,
1988
, “
Simple High‐Accuracy Resolution Program for Convective Modelling of Discontinuities
,”
Int. J. Numer. Methods Fluids
,
8
(
10
), pp.
1291
1318
.10.1002/fld.1650081013
33.
Fooladgar
,
E.
,
Tóth
,
P.
, and
Duwig
,
C.
,
2019
, “
Characterization of Flameless Combustion in a Model Gas Turbine Combustor Using a Novel Post-Processing Tool
,”
Combust. Flame
,
204
, pp.
356
367
.10.1016/j.combustflame.2019.03.015
34.
Li
,
Z.
,
Ferrarotti
,
M.
,
Cuoci
,
A.
, and
Parente
,
A.
,
2018
, “
Finite-Rate Chemistry Modelling of Non-Conventional Combustion Regimes Using a Partially-Stirred Reactor Closure: Combustion Model Formulation and Implementation Details
,”
Appl. Energy
,
225
, pp.
637
655
.10.1016/j.apenergy.2018.04.085
35.
Chomiak
,
J.
, and
Karlsson
,
A.
,
1996
, “
Flame Liftoff in Diesel Sprays
,”
Symp. (Int.) Combust.
,
26
(
2
), pp.
2557
2564
.10.1016/S0082-0784(96)80088-9
36.
Zhang
,
K.
, and
Jiang
,
X.
,
2019
, “
Uncertainty Quantification of Fuel Variability Effects on High Hydrogen Content Syngas Combustion
,”
Fuel
,
257
, p.
116111
.10.1016/j.fuel.2019.116111
37.
Zhang
,
K.
, and
Jiang
,
X.
,
2018
, “
An Investigation of Fuel Variability Effect on Bio-Syngas Combustion Using Uncertainty Quantification
,”
Fuel
,
220
, pp.
283
295
.10.1016/j.fuel.2018.02.007
38.
Oberleithner
,
K.
,
Terhaar
,
S.
,
Rukes
,
L.
, and
Oliver Paschereit
,
C.
,
2013
, “
Why Nonuniform Density Suppresses the Precessing Vortex Core
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p. 121506.10.1115/1.4025130
You do not currently have access to this content.