Abstract

Renewably generated ammonia offers a form of carbon-free chemical energy storage to meet the differences between uncertain supply and fluctuating demand and has the potential to support future energy requirements. The storage/transportation characteristics of NH3 are favorable compared with H2; however, there are combustion research challenges to enhance fuel reactivity while reducing harmful emissions production. The purpose of this work was to evaluate different fuel delivery concepts for a representative gas turbine combustor. An experimental and numerical comparison was made between swirl-stabilized premixed and diffusion NH3–air flames at elevated inlet temperature (473 K). The exhaust NOx and NH3 emissions generated from each concept were quantified to optimize combustor performance. High-speed OH* and NH2* chemiluminescence was employed to characterize the change in flame topology with variation in fuel–air equivalence ratio, and the resultant influence on measured emission concentrations. Chemiluminescence intensities were shown to elucidate changes in sampled exhaust emissions, enabling detailed analysis of intermediate chemistry. A comparison was made between experimental data and kinetic simulations, demonstrating the sensitivity of NOx emissions to premixed fuel–air equivalence ratio. A comparison was also made between exclusive primary airflow, and the staged introduction of secondary air, to quantify the change in NOx production between each configuration and improve fuel burnout. Secondary air loadings were incrementally increased through the combustor. Finally, reactant humidification was employed as a secondary process for NOx reduction, having shown favorable performance with NH3–H2 mixtures, with the efficacy compared for both premixed and diffusion configurations.

References

1.
Valera-Medina
,
A.
,
Xiao
,
H.
,
Owen-Jones
,
M.
,
David
,
W.
, and
Bowen
,
P.
,
2018
, “
Ammonia for Power
,”
Prog. Energy Combust. Sci.
,
69
, pp.
63
102
.10.1016/j.pecs.2018.07.001
2.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. D.
,
Kunkuma
,
A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
3.
Pugh
,
D.
,
Bowen
,
P.
,
Valera-Medina
,
A.
,
Giles
,
A.
,
Runyon
,
J.
, and
Marsh
,
R.
,
2019
, “
Influence of Steam Addition and Elevated Ambient Conditions on NOx Reduction in a Staged Premixed Swirling NH3/H2 Flame
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5401
5409
.10.1016/j.proci.2018.07.091
4.
Pfahl
,
U. J.
,
Ross
,
M. C.
,
Shepherd
,
J. E.
,
Pasamehmetoglu
,
K. O.
, and
Unal
,
C.
,
2000
, “
Flammability Limits, Ignition Energy, and Flame Speeds in H2–CH4–NH3–N2O–O2–N2 Mixtures
,”
Combust. Flame
,
123
(
1–2
), pp.
140
158
.10.1016/S0010-2180(00)00152-8
5.
Pugh, D., Runyon, J., Bowen, P., Giles, A., Valera-Medina, A., Marsh, R., Goktepe, B., and Hewlett, S.
,
2020
, “
An Investigation of Ammonia Primary Flame Combustor Concepts for Emissions Reduction With OH*, NH2* and NH* Chemiluminescence at Elevated Conditions
,”
Proc. Comb. Inst.
, ePub.10.1016/j.proci.2020.06.310
6.
Mathieu
,
O.
, and
Petersen
,
E.
,
2015
, “
Experimental and Modeling Study on the High-Temperature Oxidation of Ammonia and Related NOx Chemistry
,”
Combust. Flame
,
162
(
3
), pp.
554
570
.10.1016/j.combustflame.2014.08.022
7.
Nozari
,
H.
,
Karaca
,
G.
,
Tuncer
,
O.
, and
Karabeyoglu
,
A.
,
2017
, “
Porous Medium Based Burner for Efficient and Clean Combustion of Ammonia–Hydrogen–Air Systems
,”
Int. J. Hydrogen Energy
,
42
(
21
), pp.
14775
14785
.10.1016/j.ijhydene.2017.03.234
8.
Guteša Božo
,
M.
,
Vigueras-Zuniga
,
M. O.
,
Buffi
,
M.
,
Seljak
,
T.
, and
Valera-Medina
,
A.
,
2019
, “
Fuel Rich Ammonia-Hydrogen Injection for Humidified Gas Turbines
,”
Appl. Energy
,
251
, p.
113334
.10.1016/j.apenergy.2019.113334
9.
Valera-Medina
,
A.
,
Pugh
,
D.
,
Marsh
,
R.
,
Bulat
,
G.
, and
Bowen
,
P.
,
2017
, “
Preliminary Study on Lean Premixed Combustion of Ammonia-Hydrogen for Swirling Gas Turbine Combustors
,”
Int. J. Hydrogen Energy
,
42
(
38
), pp.
24495
24503
.10.1016/j.ijhydene.2017.08.028
10.
Kurata
,
O.
,
Iki
,
N.
,
Matsunuma
,
T.
,
Inoue
,
T.
,
Tsujimura
,
T.
,
Furutani
,
H.
,
Kobayashi
,
H.
, and
Hayakawa
,
A.
,
2017
, “
Performances and Emission Characteristics of NH3–Air and NH3–CH4–Air Combustion Gas-Turbine Power Generations
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3351
3359
.10.1016/j.proci.2016.07.088
11.
Okafor
,
E. C.
,
Naito
,
Y.
,
Colson
,
S.
,
Ichikawa
,
A.
,
Kudo
,
T.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2018
, “
Experimental and Numerical Study of the Laminar Burning Velocity of CH4–NH3–Air Premixed Flames
,”
Combust. Flame
,
187
, pp.
185
198
.10.1016/j.combustflame.2017.09.002
12.
Valera-Medina
,
A.
,
Marsh
,
R.
,
Runyon
,
J.
,
Pugh
,
D.
,
Beasley
,
P.
,
Hughes
,
T.
, and
Bowen
,
P.
,
2017
, “
Ammonia–Methane Combustion in Tangential Swirl Burners for Gas Turbine Power Generation
,”
Appl. Energy
,
185
(
2
), pp.
1362
1371
.10.1016/j.apenergy.2016.02.073
13.
Hayakawa
,
A.
,
Arakawa
,
Y.
,
Mimoto
,
R.
,
Somarathne
,
A.
,
Kunkuma
,
K. D.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2017
, “
Experimental Investigation of Stabilization and Emission Characteristics of Ammonia/Air Premixed Flames in a Swirl Combustor
,”
Int. J. Hydrogen Energy
,
42
(
19
), pp.
14010
14018
.10.1016/j.ijhydene.2017.01.046
14.
Kurata
,
O.
,
Iki
,
N.
,
Inoue
,
T.
,
Matsunuma
,
T.
,
Tsujimura
,
T.
,
Furutani
,
H.
,
Kawano
,
M.
,
Arai
,
K.
,
Okafor
,
E. C.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2019
, “
Development of a Wide Range-Operable, Rich-Lean low-NOx Combustor for NH3 Fuel Gas-Turbine Power Generation
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4587
4595
.10.1016/j.proci.2018.09.012
15.
Somarathne
,
K. D. K. A.
,
C. Okafor
,
E.
,
Hayakawa
,
A.
,
Kudo
,
T.
,
Kurata
,
O.
,
Iki
,
N.
, and
Kobayashi
,
H.
,
2019
, “
Emission Characteristics of Turbulent Non-Premixed Ammonia/Air and Methane/Air Swirl Flames Through a Rich-Lean Combustor Under Various Wall Thermal Boundary Conditions at High Pressure
,”
Combust. Flame
,
210
, pp.
247
261
.10.1016/j.combustflame.2019.08.037
16.
Somarathne
,
K. D. K. A.
,
Hatakeyama
,
S.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2017
, “
Numerical Study of a Low Emission Gas Turbine Like Combustor for Turbulent Ammonia/Air Premixed Swirl Flames With a Secondary Air Injection at High Pressure
,”
Int. J. Hydrogen Energy
,
42
(
44
), pp.
27388
27399
.10.1016/j.ijhydene.2017.09.089
17.
Okafor
,
E. C.
,
Somarathne
,
K. D. K. A.
,
Hayakawa
,
A.
,
Kudo
,
T.
,
Kurata
,
O.
,
Iki
,
N.
, and
Kobayashi
,
H.
,
2019
, “
Towards the Development of an Efficient low-NOx Ammonia Combustor for a Micro Gas Turbine
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4597
4606
.10.1016/j.proci.2018.07.083
18.
Okafor
,
E. C.
,
Somarathne
,
K. D. K. A.
,
Ratthanan
,
R.
,
Hayakawa
,
A.
,
Taku
,
K.
,
Kurata
,
O.
,
Iki
,
N.
,
Tsujimur
,
T.
,
Furutani
,
H.
, and
Kobayashi
,
H.
,
2020
, “
Control of NOx and Other Emissions in Micro Gas Turbine Combustors Fuelled With Mixtures of Methane and Ammonia
,”
Combust. Flame
,
211
, pp.
406
416
.10.1016/j.combustflame.2019.10.012
19.
Pugh
,
D. G.
,
Bowen
,
P. J.
,
Marsh
,
R.
,
Crayford
,
A. P.
,
Runyon
,
J.
,
Morris
,
S.
,
Valera-Medina
,
A.
, and
Giles
,
A.
,
2017
, “
Dissociative Influence of H2O Vapour/Spray on Lean Blowoff and NOx Reduction for Heavily Carbonaceous Syngas Swirling Flames
,”
Combust. Flame
,
177
, pp.
37
48
.10.1016/j.combustflame.2016.11.010
20.
Pugh
,
D.
,
Bowen
,
P.
,
Crayford
,
A.
,
Marsh
,
R.
,
Runyon
,
J.
,
Morris
,
S.
, and
Giles
,
A.
,
2018
, “
Catalytic Influence of Water Vapor on Lean Blow-Off and NOx Reduction for Pressurized Swirling Syngas Flames
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
061502
.10.1115/1.4038417
21.
ISO, 1996, “Gas Turbines — Exhaust Gas Emission — Part 1: Measurement and Evaluation,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 11042-1:1996
.https://www.iso.org/standard/19022.html
22.
Runyon
,
J.
,
Giles
,
A.
,
Marsh
,
R.
,
Pugh
,
D.
,
Goktepe
,
B.
,
Bowen
,
P.
, and
Morris
,
S.
,
2020
, “
Characterization of ALM Swirl Burner Surface Roughness and Its Effects on Flame Stability Using High-Speed Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
041017
.10.1115/1.4044950
23.
Gaydon
,
A. G.
,
1974
,
The Spectroscopy of Flames
, 2nd ed.,
Chapman and Hall
,
London UK
.
24.
Fontijn
,
A.
,
1965
, “
Mechanism of CN and NH Chemiluminescence in the N–O–C2H2 and O–NO–C2H2 Reactions
,”
J. Chem. Phys.
,
43
(
1
), pp.
1829
1830
.10.1063/1.1697018
25.
Bergeat
,
A.
,
Calvo
,
T.
,
Daugey
,
N.
,
Loison
,
J.-C.
, and
Dorthe
,
G.
,
1998
, “
Product Branching Ratios of the CH + NO Reaction
,”
J. Chem. Phys.
,
102
(
42
), pp.
8124
8130
.10.1021/jp9820929
26.
Yi
,
Y.
,
Zhang
,
R.
,
Wang
,
L.
,
Yan
,
J.
,
Zhang
,
J.
, and
Guo
,
H.
,
2017
, “
Plasma-Triggered CH4/NH3 Coupling Reaction for Direct Synthesis of Liquid Nitrogen-Containing Organic Chemicals
,”
ACS Omega
,
2
(
12
), pp.
9199
9210
.10.1021/acsomega.7b01060
27.
Ohashi
,
K.
,
Kasai
,
T.
,
Chil Che
,
D.
, and
Kuwata
,
K.
,
1989
, “
Alignment Dependence of the Amidogen Chemiluminescence in the Reaction of Argon(3P) Atoms With the Aligned Ammonia Molecules
,”
J. Chem. Phys.
,
93
(
14
), pp.
5484
5487
.10.1021/j100351a033
28.
Schott
,
G. L.
,
Blair
,
L. S.
, and
Morgan
,
J. D.
,
1973
, “
Exploratory Shock-Wave Study of Thermal Nitrogen Trifluoride Decomposition and Reactions of Nitrogen Trifluoride and Dinitrogen Tetrafluoride With Hydrogen
,”
J. Chem. Phys.
,
77
(
24
), pp.
2823
2830
.10.1021/j100642a001
29.
Roose
,
T. R.
,
Hanson
,
R. K.
, and
Kruger
,
C. H.
,
1981
, “
A Shock Tube Study of the Decomposition of No in the Presence of NH3
,”
Proc. Combust. Inst.
,
18
(
1
), pp.
853
862
.10.1016/S0082-0784(81)80089-6
30.
Bowman
,
C.
,
Frenklach
,
M.
,
Gardiner
,
W.
, and
Smith
,
G.
,
1999
,
The ‘GRIMech 3.0’ Chemical Kinetic Mechanism
,
University of California Berkeley
,
Berkeley, CA
.
31.
Runyon
,
J.
,
Marsh
,
R.
,
Bowen
,
P.
,
Pugh
,
D.
,
Giles
,
A.
, and
Morris
,
S.
,
2018
, “
Lean Methane Flame Stability in a Premixed Generic Swirl Burner: Isothermal Flow and Atmospheric Combustion Characterization
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
125
140
.10.1016/j.expthermflusci.2017.11.019
32.
Peterson
,
C.
,
Sowa
,
W.
, and
Samuelsen
,
G. S.
, “
Performance of a Model Rich Burn-Quick Mix-Lean Burn Combustor at Elevated Temperature and Pressure
,” NASA, Washington, DC, Report No.
NASA/CR-2002-211992
.https://ntrs.nasa.gov/citations/20030013952
You do not currently have access to this content.