Abstract

Combustion at the knocking threshold (KT) was tested using fuels with different methane numbers (MN) in a modified spark ignition (SI) engine, with high compression ratio (CR) with high turbulence intensity to the combustion process; also, fuels were tested in a cooperative fuel research (CFR) engine to measure MN and critical compression ratio (CCR); in both engines, tests were performed just into the KT. It is proposed that MN to gaseous fuels will be considered similarly to octane number (ON) to liquid fuels, to indicate the energy quality and the capacity to produce work. According to the tests, biogas has better combustion properties than the others fuels; biogas is the fuel with the highest knocking resistance; biogas is the cleanest fuel with the best energy quality measured with the energy density (ED) and adiabatic flame temperature (Tad); biogas has the highest capacity to produce work in SI engines, because of its high MN, low ED, low laminar flame speed (SL), and low Tad. Fuel combustion phenomenological characteristics were compared using CCR versus: output power, generating efficiency, ED, SL, and Tad. It is suggested that the strategies to suppress knocking are the key to improve the performance of SI engines; the knocking phenomenon is the engine limit to electrical energy generation in SI engines; two equations are proposed to define quantum generating efficiency and maximum electrical energy generated; knocking was defined as a quantum phenomenon using the entropy concepts as filter of the second law of thermodynamics.

References

1.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engines Fundamentals
, Chaps. 1 and 6,
McGraw-Hill
, New York.
2.
Gómez Montoya
,
J. P.
,
Amell
,
A. A.
, and
Olsen
,
D. B.
,
2018
, “
Engine Operation Just Above and Below the KT Using a Blend of Biogas and Natural Gas
,”
Energy
,
153
, pp.
719
725
.10.1016/j.energy.2018.04.079
3.
Gómez Montoya
,
J. P.
,
Amell
,
A. A.
, and
Olsen
,
D. B.
,
2016
, “
Prediction and Measurement of the Critical Compression Ratio and Methane Number for Blends of Biogas With Methane, Propane, and Hydrogen
,”
Fuel
,
186
, pp.
168
175
.10.1016/j.fuel.2016.08.064
4.
Lee
,
K.
,
Kim
,
T.
,
Cha
,
H.
,
Song
,
S.
, and
Min Chu
,
K.
,
2010
, “
Generating Efficiency and NOx Emissions of a Gas Engine Generator Fueled With a Biogas–Hydrogen Blend and Using an Exhaust Gas Recirculation System
,”
Int. J. Hydrogen Energy
,
35
(
11
), pp.
5723
5730
.10.1016/j.ijhydene.2010.03.076
5.
Gómez Montoya
,
J. P.
, and
Amell
,
A. A.
,
2019
, “
Effect of the Turbulence Intensity on Knocking Tendency in a SI Engine With High Compression Ratio Using Biogas and Blends With Natural Gas, Propane and Hydrogen
,”
Int. J. Hydrogen Energy
,
44
(
33
), pp.
18532
18544
.10.1016/j.ijhydene.2019.05.146
6.
Gómez Montoya
,
J. P.
,
Amador
,
G.
,
Amell
,
A. A.
, and
Olsen
,
D. B.
,
2018
, “
Strategies to Improve the Performance of a Spark-Ignition Engine Using Fuel Blends of Biogas With Natural Gas, Propane and Hydrogen
,”
Int. J. Hydrogen Energy
,
43
(
46
), pp.
21592
21602
.10.1016/j.ijhydene.2018.10.009
7.
Gómez Montoya
,
J. P.
,
Amador
,
G.
, and
Amell
,
A. A.
,
2018
, “
Effect of Equivalence Ratio on Knocking Tendency in SI Engines Fueled With Fuel Blends of Biogas, Natural Gas, Propane and Hydrogen
,”
Int. J. Hydrogen Energy
,
43
(
51
), pp.
23041
23049
.10.1016/j.ijhydene.2018.10.117
8.
Porpatham
,
E.
,
Ramesh
,
A.
, and
Nagalingam
,
B.
,
2012
, “
Effect of Compression Ratio on the Performance and Combustion of a Biogas Fueled SI Engine
,”
Fuel
,
95
(
0
), pp.
247
256
.10.1016/j.fuel.2011.10.059
9.
Porpatham
,
E.
,
Ramesh
,
A.
, and
Nagalingam
,
B.
,
2008
, “
Investigation on the Effect of Concentration of Methane in Biogas When Used as a Fuel for a SI Engine
,”
Fuel
,
87
(
8–9
), pp.
1651
1659
.10.1016/j.fuel.2007.08.014
10.
Li
,
H.
, and
Karim
,
G. A.
,
2004
, “
Knock in SI Hydrogen Engines
,”
Int. J. Hydrogen Energy
,
29
(
8
), pp.
859
865
.10.1016/j.ijhydene.2003.09.013
11.
Porpatham
,
E.
,
Ramesh
,
A.
, and
Nagalingam
,
B.
,
2013
, “
Effect of Swirl on the Performance and Combustion of a Biogas Fueled SI Engine
,”
Energy Convers. Manage.
,
75
, pp.
224
233
.10.1016/j.enconman.2013.07.071
12.
Chen
,
Y.
, and
Raine
,
R.
,
2015
, “
A Study on the Influence of Burning Rate on Engine Knock From Empirical Data and Simulation
,”
Combust. Flame
,
162
(
5
), pp.
2108
2118
.10.1016/j.combustflame.2015.01.009
13.
Bora
,
B. J.
,
Saha
,
U. K.
,
Chatterjee
,
S.
, and
Veer
,
V.
,
2014
, “
Effect of Compression Ratio on Performance, Combustion and Emission Characteristics of a Dual Fuel Diesel Engine Run on Biogas
,”
Energy Convers. Manage.
,
87
, pp.
1000
1009
.10.1016/j.enconman.2014.07.080
14.
Breaux
,
B.
,
Hoops
,
C.
, and
Glewen
,
W.
,
2016
, “
The Effect of in-Cylinder Turbulence on Lean, Premixed, Spark-Ignited Engine Performance
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), pp.
081504
081515
.10.1115/1.4032418
15.
Porpatham
,
E.
,
Ramesh
,
A.
, and
Nagalingam
,
B.
,
2007
, “
Effect of Hydrogen Addition on the Performance of a Biogas Fueled SI Engine
,”
Int. J. Hydrogen Energy
,
32
(
12
), pp.
2057
2065
.10.1016/j.ijhydene.2006.09.001
16.
Kumar
,
S.
,
Sahoo
,
N.
, and
Mohanty
,
K.
,
2019
, “
Comparative Assessment of a SI Engine Fueled With Gasoline and Raw Biogas
,”
Renewable Energy
,
134
, pp.
1307
1319
.10.1016/j.renene.2018.09.049
17.
Heywood
,
J. B.
, and
Tagalian
,
J.
,
1986
, “
Flame Initiation in a SI Engine
,”
Combust. Flame
,
64
(
2
), pp.
243
246
.10.1016/0010-2180(86)90062-3
18.
Arunachalam
,
A.
, and
Olsen
,
D. B.
,
2012
, “
Experimental Evaluation of Knock Characteristics of Producer Gas
,”
Biomass Bioenergy
,
37
, pp.
169
176
.10.1016/j.biombioe.2011.12.016
19.
Karim
,
G. A.
,
2007
, “
The Onset of Knock in Gas-Fueled SI Engines Prediction and Experiment
,”
J. Kones Powertrain Transp.
,
14
(
4
), pp.
165
175
https://kones.eu/ep/2007/vol14/no4/JO%20KONES%202007%20NO.%204,%20VOL.%2014%20KARIM%202.pdf.
20.
Karim
,
G. A.
, 2003, “
Knock and Combustion Characteristics of CH4, CO, H2 and Their Binary Mixtures
,”
SAE
Paper No. 2003-01-3088.10.4271/2003-01-3088
21.
Rostampour
,
A.
, and
Toosi
,
A. N.
, “
Numerical Investigation of the Effect of Knock on Heat Transfer in a Turbocharged Spark Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
, 137(12), p. 121502.10.1115/1.4030517
22.
Shu
,
G.
,
Pan
,
J.
, and
Wei
,
H.
,
2013
, “
Analysis of Onset and Severity of Knock in SI Engine Based on in-Cylinder Pressure Oscillations
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
1297
1306
.10.1016/j.applthermaleng.2012.11.039
23.
Zhen
,
X.
,
Wang
,
Y.
,
Xu
,
S.
,
Zhu
,
Y.
,
Tao
,
C.
,
Xu
,
T.
, and
Song
,
M.
,
2012
, “
The Engine Knock Analysis—An Overview
,”
Appl. Energy
,
92
, pp.
628
636
.10.1016/j.apenergy.2011.11.079
24.
Leiker
,
M.
, and
Christoph
,
K.
,
1972
, “
Evaluation of Antiknocking property of gaseous Fuels by Means of Methane Number and Its Practical Application to Gas Engines
,”
Am. Soc. Mech. Eng.
,
72
, p.
DGP-4
.https://books.google.com.pe/books/about/Evaluation_of_Antiknocking_Property_of_G.html?id=o_xgkQEACAAJ&redir_esc=y
25.
Malenshek
,
M.
, and
Olsen
,
D. B.
,
2009
, “
Methane Number Testing of Alternative Gaseous Fuels
,”
Fuel
,
88
(
4
), pp.
650
656
.10.1016/j.fuel.2008.08.020
26.
Schiffgens
,
H. J.
,
Endres
,
H.
,
Wackertapp
,
H.
, and
Schrey
,
E.
,
1994
, “
Concepts for the Adaptation of SI Gas Engines to Changing Methane Number
,”
ASME J. Eng. Gas Turbine Power
,
116
(
4
), pp.
733
739
.10.1115/1.2906880
27.
Ryan
,
T. W.
,
Callahan
,
T. J.
, and
King
,
S. R.
,
1993
, “
Engine Knock Rating of Natural Gases Methane Number
,”
ASME J. Eng. Gas Turbine Power
,
115
(
4
), pp.
769
776
.10.1115/1.2906773
28.
Gómez Montoya
,
J. P.
,
Amell
,
A. A.
, and
Olsen
,
D. B.
,
2019
, “
Operation of a SI Engine With High CR Using Biogas Blended With Natural Gas, Propane and Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), pp.
051006
051016
.10.1115/1.4041755
29.
Bond
,
T.
, and
Templeton
,
M. R.
,
2011
, “
History and Future of Domestic Biogas Plants in the Developing World
,”
Energy Sustainable Dev.
,
15
(
4
), pp.
347
354
.10.1016/j.esd.2011.09.003
30.
Patel
,
S.
,
Tonjes
,
D.
, and
Mahajan
,
D.
,
2011
, “
Biogas Potential on Long Island, New York
,”
Quant. Study. J. Renewable Sustainable Energy
,
3
(
4
), pp.
043118
043128
.10.1063/1.3614443
31.
Huang
,
J.
, and
Crookes
,
R. J.
,
1998
, “
Assessment of Simulated Biogas as a Fuel for the SI Engine
,”
Fuel
,
77
(
15
), pp.
1793
1801
.10.1016/S0016-2361(98)00114-8
32.
Jeong
,
C.
,
Kim
,
T.
,
Lee
,
K.
,
Song
,
S.
, and
Chun
,
K.
,
2009
, “
Generating Efficiency and Emissions of a Spark-Ignition Gas Engine Generator Fueled With Biogas–Hydrogen Blends
,”
Int. J. Hydrogen Energy
,
34
(
23
), pp.
9620
9627
.10.1016/j.ijhydene.2009.09.099
33.
Kan
,
X.
,
Zhou
,
D.
,
Yang
,
W.
,
Zhai
,
X.
, and
Wang
,
C. H.
,
2018
, “
An Investigation on Utilization of Biogas and Syngas Produced From Biomass Waste in Premixed SI Engine
,”
Appl. Energy
,
212
, pp.
210
222
.10.1016/j.apenergy.2017.12.037
34.
Kim
,
Y.
,
Kawahara
,
N.
,
Tsuboi
,
K.
, and
Tomita
,
E.
,
2016
, “
Combustion Characteristics and NOX Emissions of Biogas Fuels With Various CO2 Contents in a Micro co-Generation Spark-Ignition Engine
,”
Appl. Energy
,
182
, pp.
539
547
.10.1016/j.apenergy.2016.08.152
35.
Chandra
,
R.
,
Vijay
,
V. K.
,
Subbarao
,
P. M. V.
, and
Khura
,
T. K.
,
2011
, “
Performance Evaluation of a Constant Speed IC Engine on CNG, Methane Enriched Biogas and Biogas
,”
Appl. Energy
,
88
(
11
), pp.
3969
3977
.10.1016/j.apenergy.2011.04.032
36.
Makareviciene
,
V.
,
Sendzikiene
,
E.
,
Pukalskas
,
S.
,
Rimkus
,
A.
, and
Vegneris
,
R.
,
2013
, “
Performance and Emission Characteristics of Biogas Used in Diesel Engine Operation
,”
Energy Convers. Manage.
,
75
, pp.
224
233
.10.1016/j.enconman.2013.06.012
37.
Bell
,
S. R.
, and
Rathnam
,
S.
,
2001
, “
Fuel Composition Effects on Emissions From a Spark-Ignited Engine Operated on Simulated Biogases
,”
ASME J. Eng. Gas Turbines Power,
123
(
1
), pp.
132
138
.10.1115/1.1338951
38.
Chulyoung
,
J.
,
Kim
,
T.
,
Lee
,
K.
,
Song
,
S.
, and
Chun
,
K.
,
2009
, “
Generating Efficiency and Emissions of a Spark-Ignition Gas Engine Generator Fueled With Biogas–Hydrogen Blends
,”
Int. J. Hydrogen Energy
,
34
(
23
), pp.
9620
9627
.
39.
Cheolwoong
,
P.
,
Park
,
S.
,
Lee
,
Y.
,
Kim
,
C.
,
Lee
,
S.
, and
Moriyoshi
,
Y.
,
2011
, “
Performance and Emission Characteristics of a SI Engine Fueled by Low Calorific Biogas Blended With Hydrogen
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
10080
10088
.10.1016/j.ijhydene.2011.05.018
You do not currently have access to this content.