Abstract

To accurately predict the leakage flow and resistance characteristics of brush seals, the multiblock structured mesh and the mesh motion technique are applied to the three-dimensional (3D) staggered tube bundle model of brush seals. The multiblock structured mesh can easily add nodes and set boundary layers in the interbristle gap between adjacent bristles, which can ensure good mesh quality (orthogonal angle and expansion ratio). The mesh motion technique realizes the overall axial compactness of the bristle pack. The effects of pressure ratioRp, sealing clearance c, and bristle pack compactness on the leakage flow and resistance characteristics are investigated. To analyze the aerodynamic resistance of the brush seals, Euler number (Eu) is applied in this study. The numerical results are in good agreement with the experimental data. Thus, the accuracy of the presented numerical method is validated. For the contacting brush seal, ΔSx,i has a significant effect on the leakage flow rate reduction. For the clearance brush seal, ΔSx,i has little effect on the leakage flow rate reduction. The leakage flow passing through the sealing clearance keeps almost constant. As for aerodynamic resistance, the presence of the sealing clearance can effectively convert the pressure energy of the leakage flow into the kinetic energy. As a result, the leakage flow velocity exiting the bristle pack of the clearance brush seal is 1.5 to 2.0 times larger than that of the contacting brush seal. Although the existence of the sealing clearance obviously increases the leakage flow rate, it effectively reduces the aerodynamic forces acting on the bristles. The developed numerical approach based on the three-dimensional staggered tube bundle model and multiblock structured mesh can serve as a technical method for analysis of the sealing mechanisms of brush seals.

References

1.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
313
349
.10.2514/1.17778
2.
Chupp
,
R. E.
, and
Dowler
,
C. A.
,
1993
, “
Performance-Characteristics of Brush Seals for Limited-Life Engines
,”
ASME J Eng. Gas Turbines Power
,
115
(
2
), pp.
390
396
.10.1115/1.2906721
3.
Aslan-Zada
,
F. E.
,
Mammadov
,
V. A.
, and
Dohnal
,
F.
,
2013
, “
Brush Seals and Labyrinth Seals in Gas Turbine Applications
,”
Proc. Inst. Mech. Eng. A
,
227
(
2
), pp.
216
230
.10.1177/0957650912464922
4.
Schwarz
,
H.
,
Friedrichs
,
J.
, and
Flegler
,
J.
, “
Design Parameters of Brush Seals and Their Impact on Seal Performance
,”
ASME
Paper No. GT2012-68956.10.1115/GT2012-68956
5.
Bayley
,
F. J.
, and
Long
,
C. A.
,
1993
, “
A Combined Experimental and Theoretical-Study of Flow and Pressure Distributions in a Brush Seal
,”
ASME J. Eng. Gas Turbines Power
,
115
(
2
), pp.
404
410
.10.1115/1.2906723
6.
Turner
,
M. T.
,
Chew
,
J. W.
, and
Long
,
C. A.
,
1998
, “
Experimental Investigation and Mathematical Modeling of Clearance Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
120
(
3
), pp.
573
579
.10.1115/1.2818185
7.
Li
,
J.
,
Qiu
,
B.
, and
Feng
,
Z. P.
,
2012
, “
Experimental and Numerical Investigations on the Leakage Flow Characteristics of the Labyrinth Brush Seal
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102509
.10.1115/1.4007062
8.
Qiu
,
B.
,
Li
,
J.
, and
Yan
,
X.
,
2014
, “
Investigation Into the Flow Behavior of Multi-Stage Brush Seals
,”
Proc. Inst. Mech. Eng. A
,
228
(
4
), pp.
416
428
.10.1177/0957650914522456
9.
Raben
,
M.
,
Friedrichs
,
J.
,
Helmis
,
T.
, and
Flegler
,
J.
,
2016
, “
Brush Seals Used in Steam Environments-Chronological Wear Development and the Impact of Different Seal Designs
,”
ASME J Eng. Gas Turbines Power
,
138
(
5
), p.
051901
.10.1115/1.4031531
10.
Dogu
,
Y.
,
2005
, “
Investigation of Brush Seal Flow Characteristics Using Bulk Porous Medium Approach
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
136
144
.10.1115/1.1808425
11.
Braun
,
M. J.
,
Hendricks
,
R. C.
, and
Canacci
,
V. A.
,
1990
, “
Non-Intrusive Qualitative and Quantitative Flow Characterization and Bulk Flow Model for Brush Seals
,”
Proceedings of the Japan International Tribology Conference
,
Nagoya
, Japan, Oct. 29–Nov. 1, pp.
1611
1616
.
12.
Holle
,
G. F.
,
Chupp
,
R. E.
, and
Dowler
,
C. A.
,
1992
, “
Brush Seal Leakage Correlations Based on Effective Thickness
,”
Proceedings of the Fourth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-4)
,
Honolulu, HI
, Apr. 5–8, pp. 2
53
–2
61
.
13.
Hendricks
,
R. C.
,
Flower
,
R.
, and
Howe
,
H.
,
1996
, “
A Brush Seal Program Modeling and Developments
,”
NASA
,
Washington, DC
, Report No.
107158
.10.1155/S1023621X98000086
14.
Dogu
,
Y.
, and
Aksit
,
M. F.
,
2006
, “
Effects of Geometry on Brush Seal Pressure and Flow Fields—Part I: Front Plate Configurations
,”
ASME J. Turbomach.
,
128
(
2
), pp.
367
378
.10.1115/1.2101857
15.
Dogu
,
Y.
, and
Aksit
,
M. F.
,
2006
, “
Effects of Geometry on Brush Seal Pressure and Flow Fields—Part II: Backing Plate Configurations
,”
ASME J. Turbomach.
,
128
(
2
), pp.
379
389
.10.1115/1.2101858
16.
Dogu
,
Y.
,
Bahar
,
A. S.
,
Sertcakan
,
M. C.
,
Piskin
,
A.
,
Arican
,
E.
, and
Kocagul
,
M.
,
2016
, “
Computational Fluid Dynamics Investigation of Brush Seal Leakage Performance Depending on Geometric Dimensions and Operating Conditions
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032506
.10.1115/1.4031370
17.
Dogu
,
Y.
,
Sertcakan
,
M. C.
,
Gezer
,
K.
, and
Kocagul
,
M.
,
2018
, “
Flow Resistance Coefficients of Porous Brush Seal as a Function of Pressure Load
,”
ASME J Eng. Gas Turbines Power
,
140
(
8
), p.
082504
.10.1115/1.4038994
18.
Braun
,
M. J.
, and
Kudriavtsev
,
V. V.
,
1995
, “
A Numerical-Simulation of a Brush Seal Section and Some Experimental Results
,”
ASME J. Turbomach.
,
117
(
1
), pp.
190
202
.10.1115/1.2835637
19.
Braun
,
M. J.
, and
Kudriavtsev
,
V. V.
,
1995
, “
Fluid Flow Structures in Staggered Banks of Cylinders Located in a Channel
,”
ASME J. Fluids Eng.
,
117
(
1
), pp.
36
44
.10.1115/1.2816815
20.
Kang
,
Y. C.
,
Liu
,
M. H.
,
Kao-Walter
,
S.
,
Reheman
,
W.
, and
Liu
,
J. B.
,
2018
, “
Predicting Aerodynamic Resistance of Brush Seals Using Computational Fluid Dynamics and a 2-D Tube Banks Model
,”
Tribol. Int.
,
126
, pp.
9
15
.10.1016/j.triboint.2018.04.023
21.
Fuchs
,
A.
, and
Haidn
,
O. J.
,
2019
, “
Effects of Uncertainty and Quasi-Chaotic Geometry on the Leakage of Brush Seals
,”
ASME J. Turbomach.
,
141
(
2
), p.
021003
.10.1115/1.4041081
22.
Chew
,
J. W.
, and
Guardino
,
C.
,
2004
, “
Simulation of Flow and Heat Transfer in the Tip Region of a Brush Seal
,”
Int. J. Heat Fluid Flow
,
25
(
4
), pp.
649
658
.10.1016/j.ijheatfluidflow.2003.12.001
23.
Sun
,
D.
,
Liu
,
N. N.
,
Fei
,
C. W.
,
Hu
,
G. Y.
,
Ai
,
Y. T.
, and
Choy
,
Y. S.
,
2016
, “
Theoretical and Numerical Investigation on the Leakage Characteristics of Brush Seals Based on Fluid-Structure Interaction
,”
Aerosp. Sci. Technol.
,
58
, pp.
207
216
.10.1016/j.ast.2016.08.023
24.
Pekris
,
M. J.
,
Franceschini
,
G.
, and
Gillespie
,
D. R. H.
,
2011
, “
Effect of Geometric Changes in an Idealised Contacting Brush Seal Bristle Pack on Typical Key Performance Measures
,”
ASME
Paper No. GT2011-46492.10.1115/GT2011-46492
25.
Pekris
,
M. J.
,
Franceschini
,
G.
, and
Gillespie
,
D. R. H.
,
2014
, “
An Investigation of Flow, Mechanical, and Thermal Performance of Conventional and Pressure-Balanced Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
062502
.10.1115/1.4026243
26.
Huang
,
S. Q.
,
Suo
,
S. F.
,
Li
,
Y. J.
, and
Wang
,
Y. M.
,
2014
, “
Theoretical and Experimental Investigation on Tip Forces and Temperature Distributions of the Brush Seal Coupled Aerodynamic Force
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
052502
.10.1115/1.4026074
27.
Lelli
,
D.
,
Chew
,
J. W.
, and
Cooper
,
P.
,
2006
, “
Combined Three-Dimensional Fluid Dynamics and Mechanical Modeling of Brush Seals
,”
ASME J. Turbomach.
,
128
(
1
), pp.
188
195
.10.1115/1.2103093
28.
Liu
,
Y.
,
Chew
,
J. W.
,
Pekris
,
M. J.
, and
Kong
,
X.
,
2019
, “
The Effect of Inlet Swirl on Brush Seal Bristle Deflections and Stability
,”
ASME
Paper No. GT2019-90137.10.1115/GT2019-90137
29.
Franceschini
,
G.
,
Jones
,
T. V.
, and
Gillespie
,
D. R. H.
,
2010
, “
Improved Understanding of Blow-Down in Filament Seals
,”
ASME J Turbomach
,
132
(
4
), p.
41004
.10.1115/1.3213552
30.
Deville
,
L.
, and
Arghir
,
M.
,
2019
, “
Experimental Analysis of Small Diameter Brush Seals and Comparisons With Theoretical Predictions
,”
ASME J. Tribol.
,
141
(
1
), p.
012201
.10.1115/1.4040596
31.
Gaszner
,
M.
,
Pugachev
,
A. O.
,
Georgakis
,
C.
, and
Cooper
,
P.
,
2013
, “
Leakage and Rotordynamic Coefficients of Brush Seals With Zero Cold Clearance Used in an Arrangement With Labyrinth Fins
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
122506
.10.1115/1.4025236
32.
Tang
,
S. Z.
,
Wang
,
F. L.
,
He
,
Y. L.
,
Yu
,
Y.
, and
Tong
,
Z. X.
,
2019
, “
Parametric Optimization of H-Type Finned Tube With Axial Vortex Generators by Response Surface Model and Genetic Algorithm
,”
Appl. Energy
,
239
, pp.
908
918
.10.1016/j.apenergy.2019.01.122
You do not currently have access to this content.