Abstract

An efficient approach for the detection of the acoustic damping of gas turbine combustors is the combination of spatially resolved finite element method (FEM) approaches based on the Helmholtz equation with low-order networks for all elements leading to acoustic damping. A fundamental problem of such hybrid approaches is that the flow is considered in the networks, but not in the spatially resolved FEM area. Without special treatment of the coupling plane and the boundary conditions, this leads to serious errors in the calculation of the damping rate. The purpose of the paper is the derivation of the required correction procedures, which allow the energetically consistent formulation of such hybrid models and lead to correct damping rates. The time-averaged equation of acoustic energy flux for nonuniform fluid flows is expressed in terms of reflection coefficients and compared to the equivalent formulation for vanishing mean flows. An existing transformation for boundary conditions to obtain equal energy flux at the interface between network and Helmholtz domain is analyzed in detail. The findings are then used to derive an energetically consistent transformation of transfer matrices to couple two FEM domains via a network model. The relevance of energetically consistent transfer matrices for stability analysis is demonstrated with a generic test case. The central partition is acoustically characterized via a low-order model considering mean flow. The resulting acoustic two-port is transformed to obtain an energetically consistent transfer matrix for a subsequent FEM discretized eigenvalue analysis of the remaining geometry. The eigenvalues of energetically consistent calculations are finally compared to eigenvalues of energetically inconsistent setups.

References

1.
Kornilov
,
V.
,
Rook
,
R.
,
ten Thije Boonkkamp
,
J.
, and
de Goey
,
L.
,
2009
, “
Experimental and Numerical Investigation of the Acoustic Response of Multi-Slit Bunsen Burners
,”
Combust. Flame
,
156
(
10
), pp.
1957
1970
.10.1016/j.combustflame.2009.07.017
2.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K. U.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
,
2004
, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
(
4
), pp.
489
505
.10.1016/j.combustflame.2004.03.008
3.
Wolf
,
P.
,
Balakrishnan
,
R.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y.
, and
Poinsot
,
T.
,
2012
, “
Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers
,”
Flow, Turbul. Combust.
,
88
(
1–2
), pp.
191
206
.10.1007/s10494-011-9367-7
4.
Culick
,
F. E. C.
,
2006
, “Unsteady Motions in Combustion Chambers for Propulsion Systems,” NATO Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France, RTO AGARDograph AG-AVT-039, Paper No.
AC/323(AVT-039)TP/103
.https://www.sto.nato.int/publications/STO%20Technical%20Reports/RTO-AG-AVT-039/$$AG-AVT-039-ALL.pdf
5.
Polifke
,
W.
,
2014
, “
Black-Box System Identification for Reduced Order Model Construction
,”
Ann. Nucl. Energy
,
67
(
0
), pp.
109
128
.10.1016/j.anucene.2013.10.037
6.
Silva
,
C. F.
,
Emmert
,
T.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2015
, “
Numerical Study on Intrinsic Thermoacoustic Instability of a Laminar Premixed Flame
,”
Combust. Flame
,
162
(
9
), pp.
3370
3378
.10.1016/j.combustflame.2015.06.003
7.
Gikadi
,
J.
,
Föller
,
S.
, and
Sattelmayer
,
T.
,
2014
, “
Impact of Turbulence on the Prediction of Linear Aeroacoustic Interactions: Acoustic Response of a Turbulent Shear Layer
,”
J. Sound Vib.
,
333
(
24
), pp.
6548
6559
.10.1016/j.jsv.2014.06.033
8.
Schulze
,
M.
,
Hummel
,
T.
,
Klarmann
,
N.
,
Berger
,
F.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
Linearized Euler Equations for the Prediction of Linear High-Frequency Stability in Gas Turbine Combustors
,”
ASME
Paper No. GT2016-57818.10.1115/GT2016-57818
9.
Zahn
,
M.
,
Schulze
,
M.
,
Hirsch
,
C.
,
Betz
,
M.
, and
Sattelmayer
,
T.
,
2015
, “
Frequency Domain Predictions of Acoustic Wave Propagation and Losses in a Swirl Burner With Linearized Navier-Stokes Equations
,”
ASME
Paper No. GT2015-42723.10.1115/GT2015-42723
10.
Donea
,
J.
, and
Huerta
,
A.
,
2003
, “
Finite Element Methods for Flow Problems,” John Wiley & Sons, Ltd
, Hoboken, NJ.
11.
Hofmeister
,
T.
,
Hummel
,
T.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2019
, “
Modeling and Quantification of Acoustic Damping Induced by Vortex Shedding in Non-Compact Thermoacoustic Systems
,”
ASME J. Eng. Gas Turbines Power
, 142(3), p. 031016.10.1115/1.4044936
12.
Hofmeister
,
T.
,
Hummel
,
T.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2019
, “
Quantification of Energy Transformation Processes Between Acoustic and Hydrodynamic Modes in Non-Compact Thermoacoustic Systems Via a Helmholtz-Hodge Decomposition Approach
,”
ASME
Paper No. GT2019-90240.10.1115/GT2019-90240
13.
Ewert
,
R.
, and
Schröder
,
W.
,
2003
, “
Acoustic Perturbation Equations Based on Flow Decomposition Via Source Filtering
,”
J. Comput. Phys.
,
188
(
2
), pp.
365
398
.10.1016/S0021-9991(03)00168-2
14.
Hummel
,
T.
,
Berger
,
F.
,
Hertweck
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors-Part II: Modeling and Analysis
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
071502
.10.1115/1.4035592
15.
Camporeale
,
S. M.
,
Forte
,
A.
,
Fortunato
,
B.
,
Mastrovito
,
M.
, and
Ferrante
,
A.
,
2004
, “
Numerical Simulation of the Acoustic Pressure Field in an Annular Combustion Chamber With Helmholtz Resonators
,”
ASME
Paper No. GT2004-54139.10.1115/GT2004-54139
16.
Innocenti
,
A.
,
Andreini
,
A.
, and
Facchini
,
B.
,
2015
, “
Numerical Identification of a Premixed Flame Transfer Function and Stability Analysis of a Lean Burn Combustor
,”
Energy Procedia
,
82
, pp.
358
365
.10.1016/j.egypro.2015.11.803
17.
Dowling
,
A. P.
,
1995
, “
The Calculation of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
180
(
4
), pp.
557
581
.10.1006/jsvi.1995.0100
18.
Nicoud
,
F.
, and
Wieczorek
,
K.
,
2009
, “
About the Zero Mach Number Assumption in the Calculation of Thermoacoustic Instabilities
,”
Int. J. Spray Combust. Dyn.
,
1
(
1
), pp.
67
111
.10.1260/175682709788083335
19.
Motheau
,
E.
,
Selle
,
L.
, and
Nicoud
,
F.
,
2014
, “
Accounting for Convective Effects in Zero-Mach-Number Thermoacoustic Models
,”
J. Sound Vib.
,
333
(
1
), pp.
246
262
.10.1016/j.jsv.2013.08.046
20.
Cantrell
,
R. H.
, and
Hart
,
R. W.
,
1964
, “
Interaction Between Sound and Flow in Acoustic Cavities: Mass, Momentum, and Energy Considerations
,”
J. Acoust. Soc. Am.
,
36
(
4
), pp.
697
706
.10.1121/1.1919047
21.
Morfey
,
C. L.
,
1971
, “
Acoustic Energy in Non-Uniform Flows
,”
J. Sound Vib.
,
14
(
2
), pp.
159
170
.10.1016/0022-460X(71)90381-6
22.
Myers
,
M. K.
,
1991
, “
Transport of Energy by Disturbances in Arbitrary Steady Flows
,”
J. Fluid Mech.
,
226
, pp.
383
400
.10.1017/S0022112091002434
23.
Lieuwen
,
T. C.
,
2012
, “Unsteady Combustor Physics,” Acoustic Wave Propagation II—Heat Release, Complex Geometry, and Mean Flow Effects,
Cambridge University Press
,
Cambridge, UK
, pp.
154
198
.
24.
Fischer
,
A.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2006
, “
Comparison of Multi-Microphone Transfer Matrix Measurements With Acoustic Network Models of Swirl Burners
,”
J. Sound Vib.
,
298
(
1–2
), pp.
73
83
.10.1016/j.jsv.2006.04.040
25.
Ronneberger
,
D.
,
1987
, “
Theoretische Und Experimentelle Untersuchung Der Schallausbreitung Durch Querschnittssprünge Und Lochplatten in Strömungskanälen
,” Drittes Physikalisches Institut der Universität Göttingen, Göttingen, Germany, Report No. Ro-369-11-12-14.
26.
Hubbard
,
S.
, and
Dowling
,
A.
,
1998
, “
Acoustic Instabilities in Premix Burners
,”
AIAA
Paper No. 1998-2272.10.2514/6.1998-2272
27.
Bade
,
S.
,
2014
, “
Messung Und Modellierung Der Thermoakustischen Eigenschaften Eines Modularen Brennersystems Für Vorgemischte Drallflammen
,” Ph.D. thesis, Lehrstuhl f. Thermodynamik, Technische Universtität München, Munich, Germany.
28.
Gentemann
,
A.
,
Fischer
,
A.
,
Evesque
,
S.
, and
Polifke
,
W.
,
2003
, “
Acoustic Transfer Matrix Reconstruction and Analysis for Ducts With Sudden Change of Area
,”
AIAA
Paper No. 2003-3142.10.2514/6.2003-3142
29.
Schuermans
,
B. B. H.
,
2003
, “
Modeling and Control of Thermoacoustic Instabilities
,”
Ph.D. thesis
, EPFL, Lausanne, Switzerland.https://core.ac.uk/download/pdf/147900077.pdf
30.
Campa
,
G.
, and
Camporeale
,
S.
,
2010
, “
Application of Transfer Matrix Method in Acoustics
,”
Proceedings of the COMSOL Conference
, Paris, France, Nov. 17–19.https://www.comsol.co.in/paper/download/63528/campa_paper.pdf
31.
Andreini
,
A.
,
Facchini
,
B.
,
Innocenti
,
A.
, and
Pampaloni
,
D.
,
2014
, “
Investigation of Mean-Flow Effects on Tubular Combustion Chamber Thermoacoustics Using a Burner Transfer Matrix Approach
,” Proceedings of the
COMSOL Conference
, Cambridge, UK, Sept. 17–19.https://www.comsol.co.in/paper/download/199939/andreini_paper.pdf
You do not currently have access to this content.