Abstract

Increasingly stringent regulations are imposed on nitrogen oxides emissions due to their numerous negative impacts on human health and the environment. Accurate, experimentally validated thermochemical models are required for the development of the next generation of combustors. This paper presents a series of experiments performed in lean, premixed, laminar, jet-wall stagnation flames at pressures of 2, 4, 8, and 16 atm. To target postflame temperatures relevant to gas turbine engines, the stoichiometry of the nonpreheated methane–air mixture is adjusted to an equivalence ratio of 0.7. One-dimensional (1D) profiles of temperature and NO mole fraction are measured via laser-induced fluorescence (LIF) thermometry and NO-LIF, respectively, to complement previously published flame speed data (Versailles et al., 2018, “Measurements of the Reactivity of Premixed, Stagnation, Methane-Air Flames at Gas Turbine Relevant Pressures,” ASME. J. Eng. Gas Turbines Power, 141(1), p. 011027). The results reveal that, as the pressure increases, the maximum postflame temperature stays relatively stable, and the concentration of NO produced through the flame front remains constant within uncertainty. Seven thermochemical models, selected for their widespread usage or recent date of publication, are validated against the experimental data. While all mechanisms accurately predict the postflame temperature, thanks to consistent thermodynamic parameters, important disagreements are observed in the NO concentration profiles, which highlights the need to carefully select the models used as design tools. The lack of pressure dependence of NO formation that many models fail to capture is numerically investigated via sensitivity and reaction path analyses applied to the solution of flame simulations. The termolecular reaction H+O2(+M)HO2(+M) is shown to hinder the production of atomic oxygen and to consume hydrogen radicals at higher pressures, which inhibits the formation of nitric oxide through the N2O pathway.

References

1.
Vallero
,
D.
,
2014
,
Fundamentals of Air Pollution
, 5th ed,
Academic Press
,
Cambridge, MA
.
2.
Lieuwen
,
T. C.
,
Chang
,
M.
, and
Amato
,
A.
,
2013
, “
Stationary Gas Turbine Combustion: Technology Needs and Policy Considerations
,”
Combust. Flame
,
160
(
8
), pp.
1311
1314
.10.1016/j.combustflame.2013.05.001
3.
Lipardi
,
A. C. A.
,
Versailles
,
P.
,
Watson
,
G. M. G.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2017
, “
Experimental and Numerical Study on NO x Formation in CH4-Air Mixtures Diluted With Exhaust Gas Components
,”
Combust. Flame
,
179
, pp.
325
337
.10.1016/j.combustflame.2017.02.009
4.
Bergthorson
,
J. M.
, and
Thomson
,
M. J.
,
2015
, “
A Review of the Combustion and Emissions Properties of Advanced Transportation Biofuels and Their Impact on Existing and Future Engines
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
1393
1417
.10.1016/j.rser.2014.10.034
5.
Frenklach
,
M.
,
Wang
,
H.
, and
Rabinowitz
,
M. J.
,
1992
, “
Optimization and Analysis of Large Chemical Kinetic Mechanisms Using the Solution Mapping Method - Combustion of Methane
,”
Prog. Energy Combust. Sci.
,
18
(
1
), pp.
47
73
.10.1016/0360-1285(92)90032-V
6.
Frenklach
,
M.
,
2007
, “
Transforming Data Into Knowledge—Process Informatics for Combustion Chemistry
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
125
140
.10.1016/j.proci.2006.08.121
7.
Watson
,
G. M. G.
,
Versailles
,
P.
, and
Bergthorson
,
J. M.
,
2017
, “
NO Formation in Rich Premixed Flames of C 1 C 4 Alkanes and Alcohols
,”
Proc. Combust. Inst.
,
36
, pp.
627
635
.10.1016/j.proci.2016.06.108
8.
Watson
,
G. M. G.
,
Versailles
,
P.
, and
Bergthorson
,
J. M.
,
2016
, “
NO Formation in Premixed Flames of C 1 C 3 Alkanes and Alcohols
,”
Combust. Flame
,
169
, pp.
242
260
.10.1016/j.combustflame.2016.04.015
9.
Bohon
,
M. D.
,
Guiberti
,
T.
, and
Roberts
,
W. L.
,
2018
, “
PLIF Measurements of Non-Thermal NO Concentrations in Alcohol and Alkane Premixed Flames
,”
Combust. Flame
,
194
, pp.
363
375
.10.1016/j.combustflame.2018.05.024
10.
Sutton
,
J.
,
Williams
,
B.
, and
Fleming
,
J.
,
2012
, “
Investigation of NCN and prompt-NO Formation in Low-Pressure C 1 C 4 Alkane Flames
,”
Combust. Flame
,
159
(
2
), pp.
562
576
.10.1016/j.combustflame.2011.08.023
11.
Thomsen
,
D. D.
,
Kuligowski
,
F. F.
, and
Laurendeau
,
N. M.
,
1999
, “
Modeling of NO Formation in Premixed, High-Pressure Methane Flames
,”
Combust. Flame
,
119
(
3
), pp.
307
318
.10.1016/S0010-2180(99)00062-0
12.
Reisel
,
J. R.
, and
Laurendeau
,
N. M.
,
1994
, “
Laser-Induced Fluorescence Measurements and Modeling of Nitric Oxide Formation in High-Pressure Flames
,”
Combust. Sci. Technol.
,
98
(
1–3
), pp.
137
160
.10.1080/00102209408935402
13.
Reisel
,
J. R.
, and
Laurendeau
,
N. M.
,
1995
, “
Quantitative LIF Measurements and Modeling of Nitric Oxide in High-Pressure C 2 H 4/ O 2/ N 2 Flames
,”
Combust. Flame
,
101
, pp.
141
152
.10.1016/0010-2180(94)00195-X
14.
Drake
,
M. C.
,
Ratcliffe
,
J. W.
,
Blint
,
R. J.
,
Carter
,
C. D.
, and
Laurendeau
,
N. M.
,
1991
, “
Measurements and Modeling of Flamefront NO Formation and Superequilibrium Radical Concentrations in Laminar High-Pressure Premixed Flames
,”
Proc. Combust. Inst.
,
23
(
1
), pp.
387
395
.10.1016/S0082-0784(06)80283-3
15.
Pillier
,
L.
,
Idir
,
M.
,
Molet
,
J.
,
Matynia
,
A.
, and
De Persis
,
S.
,
2015
, “
Experimental Study and Modelling of NO x Formation in High Pressure Counter-Flow Premixed CH 4/Air Flames
,”
Fuel
,
150
, pp.
394
407
.10.1016/j.fuel.2015.01.099
16.
Versailles
,
P.
,
Durocher
,
A.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2019
, “
Nitric Oxide Formation in Lean, Methane-Air Stagnation Flames at Supra-Atmospheric Pressures
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
711
718
.10.1016/j.proci.2018.05.060
17.
Versailles
,
P.
,
Durocher
,
A.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2018
, “
Measurements of the Reactivity of Premixed, Stagnation, Methane-Air Flames at Gas Turbine Relevant Pressures
,”
ASME. J. Eng. Gas Turbines Power
,
141
(
1
), p.
011027
.10.1115/1.4041125
18.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
1999
, “
GRI-Mech 3.0
,” University of California Berkeley, Berkeley, CA, accessed Aug. 1, 2020, http://combustion.berkeley.edu/gri-mech
19.
University of California at San Diego
,
2016
, “
Chemical-Kinetic Mechanisms for Combustion Applications
,” San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), San Diego, CA, accessed Aug. 1, 2020, https://web.eng.ucsd.edu/mae/groups/combustion/index.html
20.
Gokulakrishnan
,
P.
,
Fuller
,
C. C.
,
Klassen
,
M. S.
,
Joklik
,
R. G.
,
Kochar
,
Y. N.
,
Vaden
,
S. N.
,
Lieuwen
,
T. C.
, and
Seitzman
,
J. M.
,
2014
, “
Experiments and Modeling of Propane Combustion With Vitiation
,”
Combust. Flame
,
161
(
8
), pp.
2038
2053
.10.1016/j.combustflame.2014.01.024
21.
Zhou
,
C.-W.
,
Li
,
Y.
,
O'Connor
,
E.
,
Somers
,
K. P.
,
Thion
,
S.
,
Keesee
,
C.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
DeVerter
,
T. A.
,
Oehlschlaeger
,
M. A.
,
Kukkadapu
,
G.
,
Sung
,
C.-J.
,
Alrefae
,
M.
,
Khaled
,
F.
,
Farooq
,
A.
,
Dirrenberger
,
P.
,
Glaude
,
P.-A.
,
Battin-Leclerc
,
F.
,
Santner
,
J.
,
Ju
,
Y.
,
Held
,
T.
,
Haas
,
F. M.
,
Dryer
,
F. L.
, and
Curran
,
H. J.
,
2016
, “
A Comprehensive Experimental and Modeling Study of Isobutene Oxidation
,”
Combust. Flame
,
167
, pp.
353
379
.10.1016/j.combustflame.2016.01.021
22.
Zhang
,
Y.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2017
, “
Assessing the Predictions of a NO x Kinetic Mechanism on Recent Hydrogen and Syngas Experimental Data
,”
Combust. Flame
,
182
, pp.
122
141
.10.1016/j.combustflame.2017.03.019
23.
Konnov
,
A. A.
,
2009
, “
Implementation of the NCN Pathway of prompt-NO Formation in the Detailed Reaction Mechanism
,”
Combust. Flame
,
156
(
11
), pp.
2093
2105
.10.1016/j.combustflame.2009.03.016
24.
CRECK Modeling Group
,
2014
, “
CRECK Kinetics Model (Version 1412)
,” Politecnico di Milano, Milano, Italy, accessed Aug. 1, 2020, http://creckmodeling.chem.polimi.it/
25.
Glarborg
,
P.
,
Miller
,
J. A.
,
Ruscic
,
B.
, and
Klippenstein
,
S. J.
,
2018
, “
Modeling Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
67
, pp.
31
68
.10.1016/j.pecs.2018.01.002
26.
Egolfopoulos
,
F. N.
,
Zhang
,
H.
, and
Zhang
,
Z.
,
1997
, “
Wall Effects on the Propagation and Extinction of Steady, Strained, Laminar Premixed Flames
,”
Combust. Flame
,
109
(
1–2
), pp.
237
252
.10.1016/S0010-2180(96)00152-6
27.
Bergthorson
,
J. M.
,
2005
, “
Experiments and Modeling of Impinging Jets and Premixed Hydrocarbon Flames
,”
Ph.D. thesis
,
California Institute of Technology
,
Pasadena, CA
.https://thesis.library.caltech.edu/2004/6/Bergthorson_JM_2005_thesis.pdf
28.
Zimmermann
,
M.
,
Lindlein
,
N.
,
Voelkel
,
R.
, and
Weible
,
K. J.
,
2007
, “
Microlens Laser Beam Homogenizer: From Theory to Application
,”
Proc. SPIE
,
6663
, p.
666302
.10.1117/12.731391
29.
Bessler
,
W. G.
,
Schulz
,
C.
,
Lee
,
T.
,
Jeffries
,
J. B.
, and
Hanson
,
R. K.
,
2003
, “
Strategies for Laser-Induced Fluorescence Detection of Nitric Oxide in High-Pressure Flames—III: Comparison of A X Excitation Schemes
,”
Appl. Opt.
,
42
(
24
), pp.
4922
4936
.10.1364/AO.42.004922
30.
DiRosa
,
M. D.
,
Klavuhn
,
K. G.
, and
Hanson
,
R. K.
,
1996
, “
LIF Spectroscopy of NO and O 2 in High-Pressure Flames
,”
Combust. Sci. Technol.
,
118
(
4–6
), pp.
257
283
.10.1080/00102209608951981
31.
Thomsen
,
D. D.
,
Kuligowski
,
F. F.
, and
Laurendeau
,
N. M.
,
1997
, “
Background Corrections for Laser-Induced-Fluorescence Measurements of Nitric Oxide in Lean, High-Pressure, Premixed Methane Flames
,”
Appl. Opt.
,
36
(
15
), pp.
3244
3252
.10.1364/AO.36.003244
32.
Bessler
,
W.
, and
Schulz
,
C.
,
2004
, “
Quantitative Multi-Line NO-LIF Temperature Imaging
,”
Appl. Phys. B
,
78
(
5
), pp.
519
533
.10.1007/s00340-004-1421-x
33.
Lee
,
T.
,
Bessler
,
W.
,
Kronemayer
,
H.
,
Schulz
,
C.
, and
Jeffries
,
J.
,
2005
, “
Quantitative Temperature Measurements in High-Pressure Flames With Multiline NO-LIF Thermometry
,”
App. Opt.
,
44
(
31
), pp.
6718
6728
.10.1364/AO.44.006718
34.
Bessler
,
W.
,
Sick
,
V.
, and
Daily
,
J.
, 2003. “
A Versatile Modeling Tool for Nitric Oxide LIF Spectra
,”
Proceedings of Third Joint Meeting, U.S. Sections Combustion Institute
, Vol.
10
5, Chicago, IL, Mar. 16–19, pp.
1
6
. https://www.researchgate.net/publication/228825069_A_versatile_modeling_tool_for_nitric_oxide_LIF_spectra
35.
Luque
,
J.
, and
Crosley
,
D.
,
2013
, “
LIFBASE Database and Spectral Simulation Program (Version 2.1.1)
,” SRI International, Menlo Park, CA, Technical Report No. MP99-009.
36.
Versailles
,
P.
, and
Bergthorson
,
J. M.
,
2012
, “
Optimized Laminar Axisymmetrical Nozzle Design Using a Numerically-Validated Thwaites Method
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
101203
.10.1115/1.4007155
37.
Versailles
,
P.
,
2017
, “
CH Formation in Premixed Flames of C1–C4 Alkanes: Assessment of Current Chemical Modelling Capability Against Experiments
,” Ph.D. thesis,
McGill University
,
Montréal, PQ, Canada
.
38.
Kee
,
R. J.
,
Miller
,
J. A.
,
Evans
,
G. H.
, and
Dixon-Lewis
,
G.
,
1989
, “
A Computational Model of the Structure and Extiction of Strained, Opposed Flow, Premixed Methane-Air Flames
,”
Proc. Combust. Inst.
,
22
(
1
), pp.
1479
1494
.10.1016/S0082-0784(89)80158-4
39.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2016
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes: Version 2.3
,” Cantera, accessed Aug. 1, 2020, http://www.cantera.org
40.
Versailles
,
P.
,
Watson
,
G. M. G.
,
Lipardi
,
A. C. A.
, and
Bergthorson
,
J. M.
,
2016
, “
Quantitative CH Measurements in Atmospheric-Pressure, Premixed Flames of C 1 C 4 Alkanes
,”
Combust. Flame
,
165
, pp.
109
124
.10.1016/j.combustflame.2015.11.001
41.
Grcar
,
J. F.
,
Day
,
M. S.
, and
Bell
,
J. B.
,
2006
, “
A Taxonomy of Integral Reaction Path Analysis
,”
Combust. Theory Modell.
,
10
(
4
), pp.
559
579
.10.1080/13647830600551917
42.
Law
,
C. K.
,
2006
,
Combustion Physics
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.