Abstract

Measurements taken during aero engine tests and in the field showed that flutter vibrations of shrouded blades can feature rich wave content (multiwave flutter vibrations). In a previous work, we demonstrated that this behavior can be explained by the nonlinear interaction of aeroelastically unstable traveling wave modes. The resulting vibrations are quasi-periodic. In this work, we show that the nonlinear modal interaction is not strictly needed, but actually mistuning alone can explain the multiwave form of flutter vibrations. The resulting vibrations are periodic and dominated by only a single mode shape of the mistuned system. However, unrealistically high mistuning intensities are needed to obtain significant contributions of multiple wave forms under the considered strong inter-blade coupling. Thus, we conclude that mistuning cannot explain the rich wave content observed in the measurements. Moreover, mistuning tends to hamper the nonlinear modal interactions and, thus, the occurrence of quasi-periodic multiwave flutter vibrations. This implies that intentional mistuning is not only useful to stabilize flutter but might also play an important role in developing flutter-tolerant blade designs.

References

1.
Crawley
,
E. F.
,
1988
, “
Aeroelastic Formulation for Tuned and Mistuned Rotors
,”
AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines
, Vol.
2
,
M. F.
Platzer
, and
F. O.
Carta
, eds., AGARD, Loughton, UK, Chap. 19.
2.
Srinivasan
,
A. V.
, and
Fabunmi
,
J.
,
1984
, “
Cascade Flutter Analysis of Cantilevered Blades
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
34
43
.10.1115/1.3239548
3.
Waite
,
J. J.
, and
Kielb
,
R. E.
,
2016
, “
Shock Structure, Mode Shape, and Geometric Considerations for Low-Pressure Turbine Flutter Suppression
,”
ASME
Paper No. GT2016-56706.10.1115/GT2016-56706
4.
Martel
,
C.
,
Corral
,
R.
, and
Llorens
,
J. M.
,
2008
, “
Stability Increase of Aerodynamically Unstable Rotors Using Intentional Mistuning
,”
ASME J. Turbomach.
,
130
(
1
), p.
011006
.10.1115/1.2720503
5.
Groth
,
P.
,
Martensson
,
H.
, and
Andersson
,
C.
,
2010
, “
Design and Experimental Verification of Mistuning of a Supersonic Turbine Blisk
,”
ASME J. Turbomach.
,
132
(
1
), p.
011012
.10.1115/1.3072492
6.
Martel
,
C.
, and
Sánchez
,
J.
,
2018
, “
Intentional Mistuning With Predominant Aerodynamic Effects
,”
ASME
Paper No. GT2018-75081
. 10.1115/GT2018-75081
7.
Kaza
,
K. R.
, and
Kielb
,
R. E.
,
1982
, “
Flutter and Response of a Mistuned Cascade in Incompressible Flow
,”
AIAA J.
,
20
(
8
), pp.
1120
1127
.10.2514/3.51172
8.
Nowinski
,
M.
, and
Panovsky
,
J.
,
2000
, “
Flutter Mechanisms in Low Pressure Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
82
88
.10.1115/1.483179
9.
Bleeg
,
J. M.
,
Yang
,
M.-T.
, and
Eley
,
J. A.
,
2009
, “
Aeroelastic Analysis of Rotors With Flexible Disks and Alternate Blade Mistuning
,”
ASME J. Turbomach.
,
131
(
1
), p.
011011
.10.1115/1.2812957
10.
Corral, R., and Gallardo, J. M., 2006, “A Methodology for the Vibration Amplitude Prediction of Self-Excited Rotors Based on Dimensional Analysis,”
ASME
Paper No. GT2006-90668.10.1115/GT2006-90668
11.
Martel
,
C.
, and
Corral
,
R.
,
2013
, “
Flutter Amplitude Saturation by Nonlinear Friction Forces: An Asymptotic Approach
,”
ASME
Paper No. GT2013-94068
. 10.1115/GT2013-94068
12.
Martel
,
C.
,
Corral
,
R.
, and
Ivaturi
,
R.
,
2015
, “
Flutter Amplitude Saturation by Nonlinear Friction Forces: Reduced Model Verification
,”
ASME J. Turbomach.
,
137
(
4
), p.
041004
.10.1115/1.4028443
13.
Corral
,
R.
, and
Gallardo
,
J. M.
,
2014
, “
Nonlinear Dynamics of Bladed Disks With Multiple Unstable Modes
,”
AIAA J.
,
52
(
6
), pp.
1124
1132
.10.2514/1.J051812
14.
Krack
,
M.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2017
, “
On the Interaction of Multiple Traveling Wave Modes in the Flutter Vibrations of Friction-Damped Tuned Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
042501
.10.1115/1.4034650
15.
Gross
,
J.
, and
Krack
,
M.
,
2019
, “
Multi-Wave Vibration Caused by Flutter Instability and Nonlinear Tip Shroud Friction
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021013
.10.1115/GT2019-90247
16.
Hartung
,
A. H.-P. H.
, and
Retze
,
U.
,
2017
, “
More Flexible Damping Systems for Blades and Vanes
,”
Tech. Mech.
,
37
(
2–5
), pp.
258
267
.10.24352/UB.OVGU-2017-102
17.
Schoenenborn
,
H.
, and
Breuer
,
T.
,
2012
, “
Aeroelasticity at Reversed Flow Conditions—Part II: Application to Compressor Surge
,”
ASME J. Turbomach.
,
134
(
6
), p.
061031
.10.1115/1.4006309
18.
Franke
,
M.
,
Kügeler
,
E.
, and
Nürnberger
,
D.
,
2005
, “Das DLR-Verfahren TRACE: Moderne Simulationstechniken Für Turbomaschinenströmungen,”
Deutscher Luft-und Raumfahrtkongress
, DGLR, Bonn, Germany.https://www.researchgate.net/publication/224798569_Das_DLR-Verfahren_TRACE_Moderne_Simulationstechniken_fur_Turbomaschinenstromungen
19.
Pierre
,
C.
, and
Murthy
,
D. V.
,
1992
, “
Aeroelastic Modal Characteristics of Mistuned Blade Assemblies—Mode Localization and Loss of Eigenstructure
,”
AIAA J.
,
30
(
10
), pp.
2483
2496
.10.2514/3.11251
20.
Gross
,
J.
,
Krack
,
M.
, and
Schoenenborn
,
H.
,
2018
, “
Analysis of the Effect of Multirow and Multipassage Aerodynamic Interaction on the Forced Response Variation in a Compressor Configuration—Part II: Effects of Additional Structural Mistuning
,”
ASME J. Turbomach.
,
140
(
5
), p.
051005
.10.1115/1.4038869
21.
Kielb
,
R. E.
, and
Kaza
,
K. R.
,
1984
, “
Effects of Structural Coupling on Mistuned Cascade Flutter and Response
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
17
24
.10.1115/1.3239532
22.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2006
, “
Modeling and Analysis of Mistuned Bladed Disk Vibration: Current Status and Emerging Directions
,”
J. Propul. Power
,
22
(
2
), pp.
384
396
.10.2514/1.16345
23.
Yang
,
M. T.
, and
Griffin
,
J. H.
,
2001
, “
A Reduced-Order Model of Mistuning Using a Subset of Nominal System Modes
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
893
900
.10.1115/1.1385197
24.
Kielb
,
R. E.
,
Griffin
,
J. H.
,
Feiner
,
D. M.
, and
Miyakozawa
,
T.
,
2004
, “
Flutter of Mistuned Bladed Disks and Blisks With Aerodynamic and FMM Structural Coupling
,”
ASME
Paper No. GT2004-54315.10.1115/GT2004-54315
25.
Yang
,
M. T.
, and
Griffin
,
J. H.
,
1997
, “
A Normalized Modal Eigenvalue Approach for Resolving Modal Interaction
,”
ASME J. Eng. Gas Turbines Power
,
119
(
3
), pp.
647
650
.10.1115/1.2817033
26.
Pierre
,
C.
,
Smith
,
T.
, and
Murthy
,
D.
,
1994
, “
Localization of Aeroelastic Modes in Mistuned High-Energy Turbines
,”
J. Propul. Power
,
10
(
3
), pp.
318
328
.10.2514/3.23759
27.
Bendiksen
,
O.
,
1984
, “
Aeroelastic Stabilization by Disorder and Imperfections
,”
16th IUTAM Congress of Theoretical and Applied Mechanics
, Lyngby, Denmark, Aug. 19–25, Paper No. 583P.
28.
Bendiksen
,
O.
,
2000
, “
Localization Phenomena in Structural Dynamics
,”
Chaos, Solitons Fractals
,
11
(
10
), pp.
1621
1660
.10.1016/S0960-0779(00)00013-8
29.
Tatzko
,
S.
,
2016
, “
Das Dynamische Verhalten Von Alternierend Verstimmten Schaufelkränzen Mit Reibelementkopplung
,” Ph.D. thesis, Leibniz Universität Hannover, Hannover, Germany.
30.
Wei
,
S. T.
, and
Pierre
,
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry—Part I: Free Vibrations
,”
ASME J. Vib. Acoust. Stress Reliab. Des.
,
110
(
4
), pp.
429
438
.10.1115/1.3269547
31.
Seydel
,
R.
,
1994
,
Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos
,
Springer
,
New York
.
32.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
.10.1007/s11831-016-9183-2
You do not currently have access to this content.