Abstract

Flashback is a major concern for engine operation and safety, particularly with progress toward renewably producible and cleaner-burning fuels, such as hydrogen fuel blends. This work extends prior progress in developing models for predicting the onset of boundary layer flashback. While prior attempts have developed models based on analytical theory or through phenomenological considerations, problem complexity has inhibited flashback understanding and, hence, model performance. The goal of this work is to address current model performance limitations by leveraging the representational flexibility offered by neural networks (NNs) in predicting boundary layer flashback. This is demonstrated through two applications. The first demonstrates the utility of training an NN on only a subproblem, thereby preserving model intuition. The second presents a predictive boundary layer flashback model using only a NN. Focus is placed on developing NN models which are practical; the input and output variables are easily measurable and controllable prior to experimentation.

References

1.
Chu
,
S.
, and
Majumdar
,
A.
,
2012
, “
Opportunities and Challenges for a Sustainable Energy Future
,”
Nature
,
488
(
7411
), pp.
294
303
.10.1038/nature11475
2.
Götz
,
M.
,
Lefebvre
,
J.
,
Mörs
,
F.
,
Koch
,
A. M.
,
Graf
,
F.
,
Bajohr
,
S.
,
Reimert
,
R.
, and
Kolb
,
T.
,
2016
, “
Renewable Power-to-Gas: A Technological and Economic Review
,”
Renewable Energy
,
85
, pp.
1371
1390
.10.1016/j.renene.2015.07.066
3.
Zhao
,
Y.
,
McDonell
,
V.
, and
Samuelsen
,
S.
,
2019
, “
Influence of Hydrogen Addition to Pipeline Natural Gas on the Combustion Performance of a Cooktop Burner
,”
Int. J. Hydrogen Energy
,
44
(
23
), pp.
12239
12253
.10.1016/j.ijhydene.2019.03.100
4.
Saeedmanesh
,
A.
,
Mac Kinnon
,
M. A.
, and
Brouwer
,
J.
,
2018
, “
Hydrogen is Essential for Sustainability
,”
Curr. Opin. Electrochem.
,
12
, pp.
166
181
.10.1016/j.coelec.2018.11.009
5.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011506
.10.1115/1.2771243
6.
Lieuwen
,
T.
,
McDonell
,
M.
,
Santavicca
,
D.
, and
Sattelmayer
,
T.
,
2008
, “
Burner Development and Operability Issues Associated With Steady Flowing Syngas Fired Combustors
,”
Combust. Sci. Technol.
,
180
(
6
), pp.
1169
1192
.10.1080/00102200801963375
7.
Ebi
,
D.
, and
Clemens
,
N. T.
,
2016
, “
Experimental Investigation of Upstream Flame Propagation During Boundary Layer Flashback of Swirl Flames
,”
Combust. Flame
,
168
, pp.
39
52
.10.1016/j.combustflame.2016.03.027
8.
Sayad
,
P.
,
Schönborn
,
A.
,
Li
,
M.
, and
Klingmann
,
J.
,
2015
, “
Visualization of Different Flashback Mechanisms for H2/CH4 Mixtures in a Variable-Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
031507
.10.1115/1.4028436
9.
Konle
,
M.
, and
Sattelmayer
,
T.
,
2009
, “
Interaction of Heat Release and Vortex Breakdown During Flame Flashback Driven by Combustion Induced Vortex Breakdown
,”
Exp. Fluids
,
47
(
4–5
), pp.
627
635
.10.1007/s00348-009-0679-5
10.
Duwig
,
C.
, and
Fuchs
,
L.
,
2007
, “
Large Eddy Simulation of Vortex Breakdown/Flame Interaction
,”
Phys. Fluids
,
19
(
7
), p.
075103
.10.1063/1.2749812
11.
Kröner
,
M.
,
Sattelmayer
,
T.
,
Fritz
,
J.
,
Kiesewetter
,
F.
, and
Hirsch
,
C.
,
2007
, “
Flame Propagation in Swirling Flows—Effect of Local Extinction on the Combustion Induced Vortex Breakdown
,”
Combust. Sci. Technol.
,
179
(
7
), pp.
1385
1416
.10.1080/00102200601149902
12.
Lewis
,
B.
, and
von Elbe
,
G.
,
1943
, “
Stability and Structure of Burner Flames
,”
J. Chem. Phys.
,
11
(
2
), pp.
75
97
.10.1063/1.1723808
13.
Khitrin
,
L. N.
,
Moin
,
P. B.
,
Smirnov
,
D. B.
, and
Shevchuk
,
V. U.
,
1965
, “
Peculiarities of Laminar-and Turbulent-Flame Flashbacks
,”
Symp. (Int.) Combust.
,
10
(
1
), pp.
1285
1291
.10.1016/S0082-0784(65)80263-6
14.
Fine
,
B.
,
1958
, “
The Flashback of Laminar and Turbulent Burner Flames at Reduced Pressure
,”
Combust. Flame
,
2
(
3
), pp.
253
266
.10.1016/0010-2180(58)90046-4
15.
Kalantari
,
A.
, and
McDonell
,
V.
,
2017
, “
Boundary Layer Flashback of Non-Swirling Premixed Flames: Mechanisms, Fundamental Research, and Recent Advances
,”
Prog. Energy Combust. Sci.
,
61
, pp.
249
292
.10.1016/j.pecs.2017.03.001
16.
Gruber
,
A.
,
Chen
,
J. H.
,
Valiev
,
D.
, and
Law
,
C. K.
,
2012
, “
Direct Numerical Simulation of Premixed Flame Boundary Layer Flashback in Turbulent Channel Flow
,”
J. Fluid Mech.
,
709
, pp.
516
542
.10.1017/jfm.2012.345
17.
Eichler
,
C.
, and
Sattelmayer
,
T.
,
2011
, “
Experiments on Flame Flashback in a Quasi-2D Turbulent Wall Boundary Layer for Premixed Methane-Hydrogen-Air Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
011503
.10.1115/1.4001985
18.
Kalantari
,
A.
,
Sullivan-Lewis
,
E.
, and
McDonell
,
V.
,
2016
, “
Flashback Propensity of Turbulent Hydrogen–Air Jet Flames at Gas Turbine Premixer Conditions
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
061506
.10.1115/1.4031761
19.
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2010
, “
Flashback Propensity of Syngas Flames at High Pressure: Diagnostic and Control
,”
ASME
Paper No. GT2010-23456.10.1115/GT2010-23456
20.
Kalantari
,
A.
,
Sullivan-Lewis
,
E.
, and
McDonell
,
V.
,
2017
, “
Application of a Turbulent Jet Flame Flashback Propensity Model to a Commercial as Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041506
.10.1115/1.4034649
21.
Hoferichter
,
V.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2017
, “
Analytic Prediction of Unconfined Boundary Layer Flashback Limits in Premixed Hydrogen–Air Flames
,”
Combust. Theory Modell.
,
21
(
3
), pp.
382
418
.10.1080/13647830.2016.1240832
22.
Lin
,
Y.-C.
,
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2013
, “
Turbulent Flame Speed as an Indicator for Flashback Propensity of Hydrogen-Rich Fuel Gases
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
111503
.10.1115/1.4025068
23.
Sullivan-Lewis
,
E.
,
McDonell
,
V. G.
,
Kalantari
,
A.
, and
Saxena
,
P.
,
2020
, “
Evaluation of a Turbulent Jet Flame Flashback Correlation Applied to a Annular Flow Configurations With and Without Swirl
,”
ASME
Paper No. GT2020-14703.10.1115/GT2020-14703
24.
Konle
,
M.
, and
Sattelmayer
,
T.
,
2010
, “
Time Scale Model for the Prediction of the Onset of Flame Flashback Driven by Combustion Induced Vortex Breakdown
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041503
.10.1115/1.4000123
25.
Hoferichter
,
V.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
,
Kalantari
,
A.
,
Sullivan-Lewis
,
E.
, and
McDonell
,
V.
,
2018
, “
Comparison of Two Methods to Predict Boundary Layer Flashback Limits of Turbulent Hydrogen-Air Jet Flames
,”
Flow, Turbul. Combust.
,
100
(
3
), pp.
849
873
.10.1007/s10494-017-9882-2
26.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2012
, “
ImageNet Classification With Deep Convolutional Neural Networks
,”
Advanced Neural Information Processing Systems
, Curran Associates, Inc., Red Hook, New York, pp.
1097
1105
.https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
27.
Nelson
,
D.
,
Pereira
,
A.
, and
de Oliveira
,
R.
,
2017
, “
Stock Market's Price Movement Prediction With LSTM Neural Networks
,” International Joint Conference on Neural Networks (
IJCNN
), Anchorage, AK, May 14–19, pp.
1419
1426
.10.1109/IJCNN.2017.7966019
28.
Ling
,
J.
,
Kurzawski
,
A.
, and
Templeton
,
J.
,
2016
, “
Reynolds Averaged Turbulence Modelling Using Deep Neural Networks With Embedded Invariance
,”
J. Fluid Mech.
,
807
, pp.
155
166
.10.1017/jfm.2016.615
29.
Bishop
,
C. M.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
,
New York
.
30.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
, Vol.
1
,
MIT Press
,
Cambridge, MA
.
31.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” arXiv preprint arXiv:1412.6980.
32.
Google Brain
,
2016
, “
Tensorflow: A System for Large-Scale Machine Learning
,” 12th USENIX Symposium on Operating Systems Design and Implementation (
OSDI 16
), Savannah, GA, Nov. 2–4, pp.
265
283
.https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
33.
Dam
,
B.
,
Love
,
N.
, and
Choudhuri
,
A.
,
2011
, “
Flashback Propensity of Syngas Fuels
,”
Fuel
,
90
(
2
), pp.
618
625
.10.1016/j.fuel.2010.10.021
34.
Syred
,
N.
,
Abdulsada
,
M.
,
Griffiths
,
A.
,
O'Doherty
,
T.
, and
Bowen
,
P.
,
2012
, “
The Effect of Hydrogen Containing Fuel Blends Upon Flashback in Swirl Burners
,”
Appl. Energy
,
89
(
1
), pp.
106
110
.10.1016/j.apenergy.2011.01.057
You do not currently have access to this content.