Abstract

This paper aims to develop and test Bayesian belief network-based diagnosis methods, which can be used to predict the most likely degradation levels of turbine, compressor, and fuel cell (FC) in a hybrid system based on different sensors measurements. The capability of the diagnosis systems to understand if an abnormal measurement is caused by a component degradation or by a sensor fault is also investigated. The data used both to train and to test the networks are generated from a deterministic model and later modified to consider noise or bias in the sensors. The application of Bayesian belief networks (BBNs) to fuel cell—gas turbine hybrid systems is novel, thus the results obtained from this analysis could be a significant starting point to understand their potential. The diagnosis systems developed for this work provide essential information regarding levels of degradation and presence of faults in a gas turbine, fuel cell and sensors in a fuel cell—gas turbine hybrid system. The Bayesian belief networks proved to have a good level of accuracy for all the scenarios considered, regarding both steady-state and transient operations. This analysis also suggests that in the future a Bayesian belief network could be integrated with the control system to achieve safer and more efficient operations of these plants.

References

1.
Zhang
,
X.
,
Chan
,
S. H.
,
Li
,
G.
,
Ho
,
H. K.
,
Li
,
J.
, and
Feng
,
Z.
,
2010
, “
A Review of Integration Strategies for Solid Oxide Fuel Cells
,”
J. Power Sources
,
195
(
3
), pp.
685
702
.10.1016/j.jpowsour.2009.07.045
2.
Choudhury
,
A.
,
Chandra
,
H.
, and
Arora
,
A.
,
2013
, “
Application of Solid Oxide Fuel Cell Technology for Power Generation—A Review
,”
Renewable Sustainable Energy Rev.
, 20, pp.
430
442
.10.1016/j.rser.2012.11.031
3.
Mekhilef
,
S.
,
Saidur
,
R.
, and
Safari
,
A.
,
2012
, “Comparative Study of Different Fuel Cell Technologies,”
Renewable Sustainable Energy Rev.
, 16(1), pp.
981
989
.10.1016/j.rser.2011.09.020
4.
Massardo
,
A. F.
, and
Lubelli
,
F.
,
2000
, “
Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT)—Part A: Cell Model and Cycle Thermodynamic Analysis
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
27
35
.10.1115/1.483187
5.
Fung
,
A.
, and
Zabihian
,
F.
,
2009
, “
A Review on Modeling of Hybrid Solid Oxide Fuel Cell Systems
,”
Int. J. Eng.
,
3
(
2
), pp.
85
119
. https://www.researchgate.net/publication/41845946_A_Review_on_Modeling_of_Hybrid_Solid_Oxide_Fuel_Cell_Systems
6.
Song
,
T. W.
,
Sohn
,
J. L.
,
Kim
,
T. S.
, and
Ro
,
S. T.
,
2006
, “
Performance Characteristics of a MW-Class SOFC/GT Hybrid System Based on a Commercially Available Gas Turbine
,”
J. Power Sources
,
158
(
1
), pp.
361
367
.10.1016/j.jpowsour.2005.09.031
7.
Rajashekara
,
K.
,
2005
, “
Hybrid Fuel Cell Strategies for Clean Power Generation
,”
IEEE transactions on Industry Applications
, 41(3), pp.
682
689
. 10.1109/TIA.2005.847293
8.
Rahman
,
M.
,
Zaccaria
,
V.
,
Zhao
,
X.
, and
Kyprianidis
,
K.
,
2018
, “
Diagnostics-Oriented Modelling of Micro Gas Turbines for Fleet Monitoring and Maintenance Optimization
,”
Processes
,
6
(
11
), p.
216
.10.3390/pr6110216
9.
Mahmood
,
M.
,
Martini
,
A.
,
Massardo
,
A. F.
, and
De Paepe
,
W.
,
2018
, “
Model Based Diagnostics of AE-T100 Micro Humid Air Turbine Cycle
,”
ASME
Paper No. GT2018-75979
.10.1115/GT2018-75979
10.
Davison
,
C. R.
, and
Birk
,
A. M.
,
2006
, “
Automated Fault Diagnosis of a Micro Turbine With Comparison to a Neural Network Technique
,”
ASME
Paper No. Paper No: GT2006-91085.10.1115/GT2006-91085
11.
Li
,
Z.
,
Outbib
,
R.
,
Giurgea
,
S.
,
Hissel
,
D.
,
Giraud
,
A.
, and
Couderc
,
P.
,
2019
, “
Fault Diagnosis for Fuel Cell Systems: A Data-Driven Approach Using High-Precise Voltage Sensors
,”
Renewable Energy
,
135
, pp.
1435
1444
.10.1016/j.renene.2018.09.077
12.
Wu
,
X.
, and
Ye
,
Q.
,
2016
, “
Fault Diagnosis and Prognostic of Solid Oxide Fuel Cells
,”
J. Power Sources
,
321
, pp.
47
56
.10.1016/j.jpowsour.2016.04.080
13.
Yang
,
W.
,
Lee
,
K. Y.
,
Junker
,
S. T.
, and
Ghezel-Ayagh
,
H.
,
2008
, “
Fault Diagnosis and Accommodation System With a Hybrid Model for Fuel Cell Power Plant
,”
IEEE Power and Energy Society General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century
, Pittsburgh, PA, July 20–24, pp.
1
8
.10.1109/PES.2008.4596899
14.
Ahn
,
J.
,
Noh
,
Y.
,
Park
,
S. H.
,
Choi
,
B. I.
, and
Chang
,
D.
,
2017
, “
Fuzzy-Based Failure Mode and Effect Analysis (FMEA) of a Hybrid Molten Carbonate Fuel Cell (MCFC) and Gas Turbine System for Marine Propulsion
,”
J. Power Sources
,
364
, pp.
226
233
.10.1016/j.jpowsour.2017.08.028
15.
Romessis
,
C.
, and
Mathioudakis
,
K.
,
2006
, “
Bayesian Network Approach for Gas Path Fault Diagnosis
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
64
72
.10.1115/1.1924536
16.
Lee
,
Y. K.
,
Mavris
,
D. N.
,
Volovoi
,
V. V.
,
Yuan
,
M.
, and
Fisher
,
T.
,
2010
, “
A Fault Diagnosis Method for Industrial Gas Turbines Using Bayesian Data Analysis
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041602
.10.1115/1.3204508
17.
Kestner
,
B. K.
,
Lee
,
Y. K.
,
Voleti
,
G.
,
Mavris
,
D. N.
,
Kumar
,
V.
, and
Lin
,
T. P.
,
2011
, “
Diagnostics of Highly Degraded Industrial Gas Turbines Using Bayesian Networks
,”
ASME
Paper No. GT2011-45249.10.1115/GT2011-45249
18.
Henke
,
M.
,
Kallo
,
J.
,
Friedrich
,
K. A.
, and
Bessler
,
W. G.
,
2011
, “
Influence of Pressurisation on SOFC Performance and Durability: A Theoretical Study
,”
Fuel Cells
,
11
(
4
), pp.
581
591
.10.1002/fuce.201000098
19.
Gandiglio
,
M.
,
Lanzini
,
A.
,
Leone
,
P.
,
Santarelli
,
M.
, and
Borchiellini
,
R.
,
2013
, “
Thermoeconomic Analysis of Large Solid Oxide Fuel Cell Plants: Atmospheric vs. Pressurized Performance
,”
Energy
,
55
, pp.
142
155
.10.1016/j.energy.2013.03.059
20.
Venkataraman
,
K.
,
Wanat
,
E. C.
, and
Schmidt
,
L. D.
,
2003
, “
Steam Reforming of Methane and Water-Gas Shift in Catalytic Wall Reactors
,”
AIChE J.
,
49
(
5
), pp.
1277
1284
.10.1002/aic.690490518
21.
Stambouli
,
A. B.
, and
Traversa
,
E.
,
2002
, “
Solid Oxide Fuel Cells (SOFCs): a Review of an Environmentally Clean and Efficient Source of Energy
,”
Renewable Sustainable Energy Rev.
,
6
(
5
), pp.
433
455
.10.1016/S1364-0321(02)00014-X
22.
Larosa
,
L.
,
Traverso
,
A.
, and
Zaccaria
,
V.
,
2015
, “
Ambient Temperature Impact on Pressurized SOFC Hybrid Systems
,”
ASME
Paper No. GT2015-42364.10.1115/GT2015-42364
23.
Traverso
,
A.
,
2005
, “
TRANSEO Code for the Dynamic Performance Simulation of Micro Gas Turbine Cyclesi
,”
ASME
Paper No. GT2005-68101.10.1115/GT2005-68101
24.
Pezzini
,
P.
,
Caratozzolo
,
F.
, and
Traverso
,
A.
,
2011
, “
Real-Time Simulation of an Experimental RIG with Pressurized SOFC
,”
ASME
Paper No. GT2011-45527.10.1115/GT2011-45527
25.
Larosa
,
L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2016
, “
Dynamic Analysis of a Recuperated MGT Cycle for Fuel Cell Hybrid Systems
,”
ASME
Paper No. GT2016-57312.10.1115/GT2016-57312
26.
Magistri
,
L.
,
Trasino
,
F.
, and
Costamagna
,
P.
,
2006
, “
Transient Analysis of Solid Oxide Fuel Cell Hybrids—Part I: Fuel Cell Models
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
288
293
.10.1115/1.2056529
27.
Ferrari
,
M. L.
,
Pascenti
,
M.
, and
Massardo
,
A. F.
,
2008
, “
Ejector Model for High Temperature Fuel Cell Hybrid Systems: Experimental Validation at Steady-State and Dynamic Conditions
,”
ASME J. Fuel Cell Sci. Technol.
,
5
(
4
), p.
041005
.10.1115/1.2890102
28.
Heckerman
,
D.
,
Geiger
,
D.
, and
Chickering
,
D. M.
,
1995
, “
Learning Bayesian Networks: The Combination of Knowledge and Statistical Data
,”
Mach. Learn.
,
20
(
3
), pp.
197
243
.10.1007/BF00994016
29.
Romessis
,
C.
,
Stamatis
,
A.
, and
Mathioudakis
,
K.
,
2001
, “
Setting Up a Belief Network for Turbofan Diagnosis With the Aid of an Engine Performance Model
,”
15th International Symposium on Air Breathing Engines, International Society for Air Breathing Engines
,
Bangalore, India
, Sept. 3–7, Vol. 164, pp.
19
26
.https://www.ltt.ntua.gr/images/PaperPresentations/ISABE2001-1032-pre.pdf
30.
Zaccaria
,
V.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2017
, “
Operating Strategies to Minimize Degradation in Fuel Cell Gas Turbine Hybrids
,”
Appl. Energy
,
192
, pp.
437
445
.10.1016/j.apenergy.2016.10.098
You do not currently have access to this content.