Abstract

This work describes the development of a transported Livengood–Wu (L–W) integral model for computational fluid dynamics (CFD) simulation to predict autoignition and engine knock tendency. The currently employed L–W integral model considers both single-stage and two-stage ignition processes, thus can be generally applied to different fuels such as paraffin, olefin, aromatics, and alcohol. The model implementation is first validated in simulations of homogeneous charge compression ignition (HCCI) combustion for three different fuels, showing good accuracy in prediction of autoignition timing for fuels with either single-stage or two-stage ignition characteristics. Then, the L–W integral model is coupled with G-equation model to indicate end-gas autoignition and knock tendency in CFD simulations of a direct-injection spark-ignition engine. This modeling approach is about 10 times more efficient than the ones that based on detailed chemistry calculation and pressure oscillation analysis. Two fuels with same Research Octane Number (RON) but different octane sensitivity are studied, namely, Co-Optima alkylate and Co-Optima E30. Feed-forward neural network model in conjunction with multivariable minimization technique is used to generate fuel surrogates with targets of matched RON, octane sensitivity, and ethanol content. The CFD model is validated against experimental data in terms of pressure traces and heat release rate for both fuels under a wide range of operating conditions. The knock tendency—indicated by the fuel energy contained in the autoignited region—of the two fuels at different load conditions correlates well with the experimental results and the fuel octane sensitivity, implying the current knock modeling approach can capture the octane sensitivity effect and can be applied to further investigation on composition of octane sensitivity.

References

1.
U.S. Energy Information Administration, 2019, “Monthly Energy Review,” U.S. Energy Information Administration, Washington, DC, accessed Sept. 15, 2019, https://www.eia.gov/totalenergy/data/monthly/
2.
ASTM International
,
2012
, “Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel,”
ASTM International
,
West Conshohocken, PA
, Standard No.
ASTM D2699-12
.https://www.astm.org/DATABASE.CART/HISTORICAL/D2699-12.htm
3.
ASTM International
,
2016
, “Standard Test Method for Motor Octane Number of Spark-Ignition Engine Fuel,”
ASTM International
,
West Conshohocken, PA
, Standard No.
ASTM D2700-16
.https://www.astm.org/DATABASE.CART/HISTORICAL/D2700-16.htm
4.
Leppard
,
W. R.
,
1990
, “
The Chemical Origin of Fuel Octane Sensitivity
,”
SAE
Paper No. 902137.10.4271/902137
5.
Sluder
,
C. S.
,
Szybist
,
J. P.
,
McCormick
,
R. L.
,
Ratcliff
,
M. A.
, and
Zigler
,
B. T.
,
2016
, “
Exploring the Relationship Between Octane Sensitivity and Heat-of-Vaporization
,”
SAE Int. J. Fuels Lubr.
,
9
(
1
), pp.
80
90
.10.4271/2016-01-0836
6.
Foong
,
T. M.
,
Morganti
,
K. J.
,
Brear
,
M. J.
,
da Silva
,
G.
,
Yang
,
Y.
, and
Dryer
,
F. L.
,
2013
, “
The Effect of Charge Cooling on the RON of Ethanol/Gasoline Blends
,”
SAE Int. J. Fuels Lubr.
,
6
(
1
), pp.
34
43
.10.4271/2013-01-0886
7.
Liang
,
L.
,
Reitz
,
R. D.
,
Iyer
,
C.
, and
Yi
,
J.
,
2007
, “
Modeling Knock in Spark-Ignition Engines Using a G-Equation Combustion Model Incorporating Detailed Chemical Kinetics
,”
SAE
Paper No. 2007-01-0165.10.4271/2007-01-0165
8.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
9.
Yue
,
Z.
,
Edwards
,
K. D.
,
Sluder
,
C. S.
, and
Som
,
S.
,
2019
, “
Prediction of Cyclic Variability and Knock-Limited Spark Advance in a Spark-Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102201
.10.1115/1.4043393
10.
Pal
,
P.
,
Wu
,
Y.
,
Lu
,
T.
,
Som
,
S.
,
See
,
Y. C.
, and
Le Moine
,
A.
,
2018
, “
Multidimensional Numerical Simulations of Knocking Combustion in a Cooperative Fuel Research Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102205
.10.1115/1.4040063
11.
Shao
,
J.
, and
Rutland
,
C. J.
,
2015
, “
Modeling Investigation of Different Methods to Suppress Engine Knock on a Small Spark Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
1
37
(
6
), p. 0
61506
.10.1115/1.4028870
12.
Netzer
,
C.
,
Seidel
,
L.
,
Pasternak
,
M.
,
Lehtiniemi
,
H.
,
Perlman
,
C.
,
Ravet
,
F.
, and
Mauss
,
F.
,
2018
, “
Three-Dimensional Computational Fluid Dynamics Engine Knock Prediction and Evaluation Based on Detailed Chemistry and Detonation Theory
,”
Int. J. Eng. Res.
,
19
(
1
), pp.
33
44
.10.1177/1468087417740271
13.
Yue
,
Z.
, and
Som
,
S.
,
2019
, “
Fuel Property Effects on Knock Propensity and Thermal Efficiency in a Direct-Injection Spark-Ignition Engine
,”
Appl. Energy
,
281
, p.
114221
.10.1016/j.apenergy.2019.114221
14.
Convergent
,
Science
,
2018
, “
CONVERGE 2.4 Theory Manual
,”
Convergent Science
,
Middleton, WI
.
15.
Fouts
,
L.
,
Fioroni
,
G. M.
,
Christensen
,
E.
, Ratcliff, M., McCormick, R. L., Zigler, B. T., Sluder, S., Szybist, J. P., Dec, J. E., Miles, P. C., Ciatti, S., Bays, J. T., Pitz, W., and Mehl, M.,
2018
, “
Properties of Co-Optima Core Research Gasolines
,” National Renewable Energy Laboratory, Report No.
NREL/TP-5400-71341
.https://www.nrel.gov/docs/fy18osti/71341.pdf
16.
Scikit-Learn, 2021, “Neural Network Models (Supervised),” Scikit-Learn, accessed Mar. 31, 2021, https://scikit-learn.org/stable/modules/neural_networks_supervised.html
17.
Mehl
,
M.
,
Wagnon
,
S.
,
Tsang
,
K.
, Kukkadapu, G., Pitz, W. J., Westbrook, C. K., Tsang, Y., Curran, H. J., Atef, N., Rachidi, M. A., Sarathy, M. S., and Ahmed, A.,
2017
, “
A Comprehensive Detailed Kinetic Mechanism for the Simulation of Transportation Fuels
,”
Tenth U.S. National Combustion Meeting
, College Park, MD, Apr.
23
26
. https://www.osti.gov/biblio/1357381-comprehensive-detailed-kinetic-mechanism-simulation-transportation-fuels
18.
Pal
,
P.
,
Kalvakala
,
K.
,
Wu
,
Y.
, McNenly, M., Lapointe, S., Whitesides, R., Lu, T., Aggarwal, S. K., and Som, S.,
2019
, “
Numerical Investigation of a Central Fuel Property Hypothesis Under Boosted Spark-Ignition Conditions
,”
ASME
Paper No. ICEF2019-7284.10.1115/ICEF2019-7284
19.
Livengood
,
J. C.
, and
Wu
,
P. C.
,
1955
, “
Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines
,”
Symp. (Int.) Combust.
,
5
(
1
), pp.
347
356
.10.1016/S0082-0784(55)80047-1
20.
Tao
,
M.
,
Han
,
D.
, and
Zhao
,
P.
,
2017
, “
An Alternative Approach to Accommodate Detailed Ignition Chemistry in Combustion Simulation
,”
Combus. Flame
,
176
, pp.
400
408
.10.1016/j.combustflame.2016.11.009
21.
Wang
,
H.
,
Yao
,
M.
,
Yue
,
Z.
,
Jia
,
M.
, and
Reitz
,
R. D.
,
2015
, “
A Reduced Toluene Reference Fuel Chemical Kinetic Mechanism for Combustion and Polycyclic-Aromatic Hydrocarbon Predictions
,”
Combust. Flame
,
162
(
6
), pp.
2390
2404
.10.1016/j.combustflame.2015.02.005
22.
Ren
,
S.
,
Kokjohn
,
S. L.
,
Wang
,
Z.
,
Liu
,
H.
,
Wang
,
B.
, and
Wang
,
J.
,
2017
, “
A Multi-Component Wide Distillation Fuel (Covering Gasoline, Jet Fuel and Diesel Fuel) Mechanism for Combustion and PAH Prediction
,”
Fuel
,
208
, pp.
447
468
.10.1016/j.fuel.2017.07.009
23.
Wang
,
B.-L.
,
Miles
,
P. C.
,
Reitz
,
R. D.
,
Han
,
Z.
, and
Petersen
,
B.
,
2011
, “
Assessment of RNG Turbulence Modeling and the Development of a Generalized RNG Closure Model
,”
SAE
Paper No. 2011-01-0829.10.4271/2011-01-0829
24.
Han
,
Z.
, and
Reitz
,
R. D.
,
1997
, “
A Temperature Wall Function Formulation for Variable-Density Turbulent Flows With Application to Engine Convective Heat Transfer Modeling
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
613
625
.10.1016/0017-9310(96)00117-2
25.
Peng
,
D.-Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fund.
,
15
(
1
), pp.
59
64
.10.1021/i160057a011
26.
Yue
,
Z.
,
Hessel
,
R.
, and
Reitz
,
R. D.
,
2018
, “
Investigation of Real Gas Effects on Combustion and Emissions in Internal Combustion Engines and Implications for Development of Chemical Kinetics Mechanisms
,”
Int. J. Eng. Res.
,
19
(
3
), pp.
269
281
.10.1177/1468087416678111
27.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Spray
,
9
(
6
), pp.
623
650
.10.1615/AtomizSpr.v9.i6.40
28.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.10.1006/jcph.2000.6568
29.
Amsden
,
A. A.
,
1997
, “
KIVA-3V: A Block Structured KIVA Program for Engines With Vertical or Canted Valves
,” Los Alamos National Laboratory, Los Alamos, NM, Report No.
LA-13313-MS
.https://digital.library.unt.edu/ark:/67531/metadc693255/
You do not currently have access to this content.