Abstract

This work is a feasibility study of a 19-passenger hybrid-electric aircraft, to serve the short-haul segment within the 200–600 nautical miles. Its ambition is to answer some dominating research questions, during the evaluation and design of aircraft based on alternative propulsion architectures. The potential entry into service (EIS) is foreseen beyond 2030. A literature review is performed to identify similar concepts under research and development. After the requirements' definition, the first level of conceptual design is employed. The objective of design selections is driven by the need to reduce CO2 emissions and accommodate aircraft electrification with boundary layer ingestion engines. Based on a set of assumptions, a methodology for the sizing of the hybrid-electric aircraft is described to explore the basis of the design space, incorporating a parametric analysis for the consideration of boundary layer ingestion effects. Additionally, a methodology for the energy storage positioning is provided to highlight the multidisciplinary aspects between the sizing of an aircraft, the selected architecture (series/parallel partial hybrid), and the storage characteristics. The results show that it is not possible to fulfill the initial design requirements (600 nmi) with a fully-electric aircraft configuration, due to the far-fetched battery necessities. It is also highlighted that compliance with airworthiness standards is favored by switching to hybrid-electric aircraft configurations and relaxing the design requirements (targeted range, payload, battery technology). Finally, the lower degree of hybridization (40%) is observed to have a higher energy efficiency (−12% energy consumption) compared to the higher degree of hybridization (50%) and greater CO2 reduction, with respect to the conventional configuration.

References

1.
Publications Office of the EU
,
2019
, “A Vision for 2020,” Advisory Council of Aviation Research in Europe, Publications Office of the European Union, Luxembourg, accessed Nov. 21, 2019, https://op.europa.eu/en/publication-detail/-/publication/214b7682-3947-411f-bcb5-92cb03ea7931
2.
Darecki
,
M.
, King, I.,
Edelstenne
,
C.
, Ky, P.,
Enders
,
T.
Mathieu, M., Fernandez, E., Orsi, G., Hartman, P., Schotman, G., Herteman, J-P., Smith, C., Kerkloh, M., and Wörner, J-D.,
2011
,
Flightpath 2050: Europe's Vision for Aviation: Report of the High-Level Group
,
Publications Office of the European Union
,
Luxembourg
. https://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf
3.
IATA
,
2019
, “
Working Towards Ambitious Targets
,”
International Air Transport Association
, IATA, Montreal, PQ, Canada, accessed Nov. 21, 2019, https://www.iata.org/en/programs/environment/climate-change
4.
ICAO
,
2019
, “
Independent Expert Integrated Technology Goals Assessment and Review for Engines and Aircraft
,”
International Civil Aviation Organization
,
Montréal, PQ, Canada
.http://www.icscc.org.cn/upload/file/20200603/20200603140731_33885.pdf
5.
Moore
,
M. D.
, and
Frederics
,
B.
,
2014
, “
Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Markets
,”
AIAA
Paper No. 2014-0535.10.2514/6.2014-0535
6.
Marien
,
T. V.
,
Antcliff
,
K. R.
,
Guynn
,
M. D.
, Wells, D. P., Schneider, S. J., Tong, M., Trani, A. A., Hinze, N., K., and Dollyhigh, S. M.,
2018
, “
Short-Haul Revitalization Study Final Report
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA/TM-2018-219833
.https://ntrs.nasa.gov/api/citations/20180004393/downloads/20180004393.pdf
7.
Schäfer
,
A. W.
,
Barrett
,
S. R. H.
,
Doyme
,
K.
,
Dray
,
L. M.
,
Gnadt
,
A. R.
,
Self
,
R.
,
O'Sullivan
,
A.
,
Synodinos
,
A. P.
, and
Torija
,
A. J.
,
2019
, “
Technological, Economic and Environmental Prospects of All-Electric Aircraft
,”
Nat. Energy
,
4
(
2
), pp.
160
166
.10.1038/s41560-018-0294-x
8.
EASA
,
2018
, “
Easy Access Rules for Normal-Category Aeroplanes (CS-23) (CS Amendment 5, AMC/GM Issue 1)
,”
European Aviation Safety Agency
, Cologne, Germany.
9.
FAA
, 2016, “
Electronic Code of Federal Regulations—Part 23: Airworthiness Standards: Certification of Normal Category Airplanes
,”
Federal Aviation Administration
, Washington, DC.
10.
Alderighi
,
M.
,
Cento
,
A.
,
Nijkamp
,
P.
, and
Rietveld
,
P.
,
2005
, “
Network Competition—The Coexistence of Hub-and-Spoke and Point-to-Point Systems
,”
J. Air Transp. Manage.
,
11
(
5
), pp.
328
334
.10.1016/j.jairtraman.2005.07.006
11.
Michell
,
S.
,
1994
–1995,
Jane's Civil and Military Upgrades
, 2nd ed.,
Jane's Information Group
, UK.
12.
Viking
,
A.
,
2016
, “
Twin Otter Series 400, Technical Description
,” Viking, de Havilland, BC, Canada, accessed Nov. 21, 2019, https://www.vikingair.com/sites/default/files/Viking-Twin-Otter-Series-400-Technical-Specifications-R-01-2018.pdf
13.
EASA
,
2013
, “
Type-Certificate Data Sheet, EASA.A.026, L-410
,”
European Aviation Safety Agency
, Cologne, Germany.
14.
Donald
,
D.
,
1998
,
The Complete Encyclopedia of World Aircraft
, 1st ed.,
Barnes Noble Books
, New York.
15.
Taylor
,
J. W. R.
,
Jane's All the World's Aircraft 1988-89
,
Jane's Information Group
,
London
, UK, pp.
10
12
.
16.
Bombardier
,
2017
, “
Bombardier Business Aircraft—Challenger 650 Factsheet
,”
Bombardier
, Montreal, PQ, Canada, accessed Nov. 21, 2019, https://businessaircraft.bombardier.com/en/aircraft/challenger-650#
17.
RUAG Aerospace Services GmbH
, 2016, “
Dornier 228—Advanced Commuter (AC) Facts & Figures
,”
RUAG Aerospace Services GmbH
.
18.
WestWind Aviation
, 2016, “
Beechcraft 1900D Specifications
,”
WestWind Aviation
, Saskatoon, SK, Canada, accessed Mar. 22,
2021
, https://www.westwindaviation.ca/fleet/beechcraft-1900d
19.
ANTONOV Company
, 2021, “AN-28 Light Multipurpose Aircraft,”
ANTONOV Company
, Kyiv, Ukraine, accessed Mar. 22,
2021
, https://antonov.com/en/history/an-28
20.
PZL Mielec
,
2019
, “
Performance of M28 Twin Turboprop Aircraft
,” PZL Mielec, Mielec, Poland, accessed Nov. 21, 2019, https://m28aircraft.com/generalInformations/performance
21.
Indonesian Aerospace
,
2019
, “
Indonesian Aerospace N-219—Features, Configuration, Performance and Power Plant
,”
Indonesian Aerospace
, Bandung, Indonesia, accessed Nov. 21, 2019, https://www.indonesian-aerospace.com/aircraft/detail/11_n219+nurtanio
22.
Cessna–Textron Aviation
,
2019
, “
Cessna SkyCourier. High Capacity for High Utilization—Product Card
,”
Cessna–Textron Aviation
, Wichita, KS, accessed Nov. 21, 2019, https://cessna.txtav.com
23.
Taylor
,
M. J. H.
,
1999
,
Brassey's World Aircraft & Systems Directory 1999-2000
, 2nd ed.,
University of Nebraska Press
, Lincoln, NE.
24.
Gulfstream
,
2019
, “
Technical Specifications of G650ER
,”
Gulfstream
, Savannah, GA, accessed Nov. 21, 2019, https://gulfstream.com/en/aircraft/gulfstream-g650er/
25.
Bombardier
,
2018
, “
Bombardier Business Aircraft—Global 7500, Factsheet
,”
Bombardier
, Montreal, PQ, Canada, accessed Nov. 21, 2019, https://businessaircraft.bombardier.com/en/aircraft/global-7500#
26.
Gulfstream
,
2019
, “
G700—Technical Specifications
,”
Gulfstream
, Savannah, GA, accessed Nov. 21, 2019, https://www.gulfstream.com/en/aircraft/gulfstream-g700/
27.
Larsson
,
L.
,
Grönstedt
,
T.
, and
Kyprianidis
,
K.
,
2012
, “
Conceptual Design and Mission Analysis for a Geared Turbofan and an Open Rotor Configuration
,”
ASME
Paper No. GT2011-46451.10.1115/GT2011-46451
28.
Felder
,
J. L.
,
2015
, “
NASA Electric Propulsion System Studies
,”
NASA
,
Cleveland, OH
, Report No. GRC-E-DAA-TN28410.
29.
Zhang
,
X.
,
Bowman
,
C. L.
,
O'Connell
,
T. C.
, and
Haran
,
K. S.
,
2018
, “
Large Electric Machines for Aircraft Electric Propulsion
,”
IET Electric Power Appl.
,
12
(
6
), pp.
767
779
.10.1049/iet-epa.2017.0639
30.
Wayne
,
J.
, and
Christopher
,
S.
,
2018
, “
Observations From Exploration of VTOL Urban Air Mobility Designs
,”
NASA, Jeju Island
,
South Korea
, Report No. ARC-E-DAA-TN61332.
31.
Isikveren
,
A. T.
,
Seitz
,
A.
,
Vratny
,
P. C.
, and
Pornet
,
C.
,
2012
, “
Conceptual Studies of Universally-Electric Systems Architectures Suitable for Transport Aircraft
,”
Proceedings of 61st Deutscher Luft-Und Raumfahrtkongress
,
Berlin, Germany
, Sept. 10–12, pp.
2
16
.https://www.researchgate.net/publication/274705769_Conceptual_Studies_of_Universally-Electric_Systems_Architectures_Suitable_for_Transport_Aircraft
32.
ICAO
, 2019, “
Electric and Hybrid Aircraft Platform for Innovation (E-HAPI)
,”
International Civil Aviation Organization
, Montreal, PQ, Canada, accessed Nov. 21, 2019, https://www.icao.int/environmental-protection/Pages/electric-aircraft.aspx
33.
Zeroavia
, 2019, “
Mission and Opportunity
,”
Zeroavia
, Hollister, CA, accessed Nov. 21, 2019, https://www.zeroavia.com
34.
Brown
,
K. A.
,
Fleming
,
J.
,
Langford
,
M.
, Ng, W., Schwartz, K., and Combs, C.,
2019
, “
Development of a Ducted Propulsor for BLI Electric Regional Aircraft—Part I: Aerodynamic Design and Analysis
,”
AIAA
Paper No. 2019–3853.10.2514/6.2019-3853
35.
Geiß
,
I.
, and
Voit-Nitschmann
,
R.
,
2017
, “
Sizing of Fuel-Based Energy Systems for Electric Aircraft
,”
Proc. Inst. Mech. Eng., Part G
,
231
(
12
), pp.
2295
2304
.10.1177/0954410017721254
36.
Jansen
,
R. H.
,
Bowman
,
C.
,
Jankovsky
,
A.
,
Dyson
,
R.
, and
Felder
,
J.
,
2017
, “
Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports
,”
AIAA
Paper No.
2017-4701
.10.2514/6.2017-4701
37.
Stückl
,
S.
,
Van Toor
,
J.
, and
Lobentanzer
,
H.
,
2012
, “
Voltair—The All-Electric Propulsion Concept Platform—A Vision for Atmospheric Friendly Flight
,”
Proceedings of the 28th International Congress of the Aeronautical Sciences
, Brisbane, Australia, Sept. 23–28, pp.
1
11
.https://www.icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/521.PDF
38.
Heart Aerospace
, 2019, “
Electrifying Regional Air Travel
,”
Heart Aerospace
, Stockholm, Sweden, accessed Nov. 21, 2019, https://heartaerospace.com
39.
Faradair
, 2019, “
The Bio Electric Hybrid Aircraft—‘BEHA’
,”
Faradair
, UK, accessed Nov. 21, 2019, https://faradair.com
40.
Lukasik
,
B.
, and
Wisniowski
,
W.
,
2017
, “
All-Electric Propulsion for Future Business Jet Aircraft: A Feasibility Study
,”
J. Aerosp. Eng.
,
231
(
12
), pp.
2203
2213
.10.1177/0954410017727027
41.
Voskuijl
,
M.
,
Van Bogaert
,
J.
, and
Rao
,
A. G.
,
2018
, “
Analysis and Design of Hybrid Electric Regional Turboprop Aircraft
,”
CEAS Aeronaut. J.
,
9
(
1
), pp.
15
25
.10.1007/s13272-017-0272-1
42.
Schneider
,
M.
,
Dickhoff
,
J.
, and
Kusterer
,
K.
,
2019
, “
Development of a Gas Turbine Concept for Electric Power Generation in a Commercial Hybrid Electric Aircraft
,”
ASME
Paper No. GT2019-92065.10.1115/GT2019-92065
43.
Welstead
,
J. R.
, and
Felder
,
J. L.
,
2016
, “
Conceptual Design of a Single-Aisle Turboelectric Commercial Transport With Fuselage Boundary Layer Ingestion
,”
AIAA
Paper No. 2016-1027.10.2514/6.2016-1027
44.
Antcliff
,
K. R.
, and
Capristan
,
F. M.
,
2017
, “
Conceptual Design of the Parallel Electric-Gas Architecture With Synergistic Utilization Scheme (PEGASUS) Concept
,”
AIAA
Paper No.
2017-4001.
10.2514/6.2017-4001
45.
Uranga
,
A.
,
Drela
,
M.
,
Greitzer
,
E. M.
,
Hall
,
D. K.
,
Titchener
,
N. A.
,
Lieu
,
M. K.
,
Siu
,
N. M.
,
Casses
,
C.
,
Huang
,
A. C.
,
Gatlin
,
G. M.
, and
Hannon
,
J. A.
,
2017
, “
Boundary Layer Ingestion Benefit of the D8 Transport Aircraft
,”
AIAA J.
,
55
(
11
), pp.
3693
3708
.10.2514/1.J055755
46.
Brelje
,
B.
, and
Martins
,
J. R. R. A.
,
2019
, “
Electric, Hybrid and Turboelectric Fixed-Wing Aircraft: A Review of Concepts, Models, and Design Approaches
,”
Prog. Aerosp. Sci.
,
104
, pp.
1
19
.10.1016/j.paerosci.2018.06.004
47.
Wiart
,
L.
,
Atinault
,
O.
,
Paluch
,
B.
,
Hue
,
D.
, and
Grenon
,
R.
,
2015
, “
Development of NOVA Aircraft Configurations for Large Engine Integration Studies
,”
AIAA
Paper No. 2015-2254.10.2514/6.2015-2254
48.
Stückl
,
S.
,
Mirzoyan
,
A.
, and
Isikveren
,
A. T.
,
2015
, “
DisPURSAL, D1.2—Report on the Technology Roadmap for 2035
,” Report No. D1.2, DisPURSAL Project, GA No. FP7-323013.
49.
Biser
,
S.
,
Wortmann
,
G.
,
Ruppert
,
S.
,
Filipenko
,
M.
,
Noe
,
M.
, and
Boll
,
M.
,
2019
, “
Predesign Considerations for the DC Link Voltage Level of the CENTRELINE Fuselage Fan Drive Unit
,”
Aerospace
,
6
(
12
), p.
126
.10.3390/aerospace6120126
50.
Hyun
,
K. D.
,
Perry
,
A. T.
, and
Phillip
,
A. J.
,
2018
, “
A Review of Distributed Electric Propulsion Concepts for Air Vehicle Technology
,”
AIAA
Paper No. 2018-4998.10.2514/6.2018-4998
51.
Kuhn
,
H.
,
Seitz
,
A.
,
Lorenz
,
L.
,
Isikveren
,
A. T.
, and
Sizmann
,
A.
,
2012
, “
Progress and Perspectives of Electric Air Transport
,”
Proceedings of 28th International Congress of the Aeronautical Sciences
, Brisbane, Australia, Sept. 23–28, pp.
1
14
. https://www.researchgate.net/publication/266889878_PROGRESS_AND_PERSPECTIVES_OF_ELECTRIC_AIR_TRANSPORT
52.
Mikhaylik
,
Y.
,
Kovalev
,
I.
,
Scordilis-Kelley
,
C.
, Liao, L., Laramie, M., Schoop, U., and Kelley, T.,
2018
,
Sion Power's Licerion® Batteries
,
ECS—The Electrochemical Society
, Philadelphia, PA.
53.
Raymer
,
D. P.
,
2018
,
Aircraft Design: A Conceptual Approach
, 6th ed.,
American Institute of Aeronautics and Astronautics
, VA.
54.
Misra
,
A.
,
2018
, “
Energy Storage for Electrified Aircraft: The Need for Better Batteries, Fuel Cells and Supercapacitors
,”
IEEE Electrification Mag.
,
6
(
3
), pp.
54
61
.10.1109/MELE.2018.2849922
55.
Kerman
,
K.
,
Luntz
,
A.
,
Viswanathan
,
V.
,
Chiang
,
Y.-M.
, and
Chen
,
Z.
,
2017
, “
Review-Practical Challenges Hindering the Development of Solid-State Li Ion Batteries
,”
J. Electrochem. Soc.
,
164
(
7
), pp.
A1731
A1744
.10.1149/2.1571707jes
56.
Kumar
,
R.
,
Liu
,
J.
,
Hwang
,
J. Y.
, and
Sun
,
Y.-K.
,
2018
, “
Recent Research Trends in Li-S Batteries
,”
J. Mater. Chem.
, 6(25), pp.
11582
11605
.https://pubs.rsc.org/en/content/articlelanding/2018/ta/c8ta01483c#!divAbstract
57.
Kadyk
,
T.
,
Winnefeld
,
C.
,
Hanke-Rauschenbach
,
R.
, and
Krewer
,
U.
,
2018
, “
Analysis and Design of Fuel Cell Systems for Aviation
,”
Energies
,
11
(
2
), p.
375
.10.3390/en11020375
58.
Giannakakis
,
P.
,
Pornet
,
C.
, and
Turnbull
,
A.
,
2020
, “
Turbo-Electric Propulsive Fuselage Aircraft BLI Benefits: A Design Space Exploration Using an Analytical Method
,”
Aeronaut. J.
,
124
(
1280
), pp.
1523
1544
.10.1017/aer.2020.26
59.
Isikveren
,
A. T.
,
Seitz
,
A.
,
Bijewitz
,
J.
,
Mirzoyan
,
A.
,
Isyanov
,
A.
,
Grenon
,
R.
,
Atinault
,
O.
,
Godard
,
J.-L.
, and
Stückl
,
S.
,
2015
, “
Distributed Propulsion and Ultra-High by-Pass Rotor Study at Aircraft Level
,”
Aeronaut. J.
,
119
(
1221
), pp.
1327
1376
.10.1017/S0001924000011295
60.
Fefermann
,
Y.
,
Maury
,
C.
,
Level
,
C.
,
Zarati
,
K.
, Salanne, J-P., Pornet, C., Thoraval, B., and Isikveren, A. T.,
2016
, “
Hybrid-Electric Motive Power Systems for Commuter Transport Applications
,”
Proceedings of 30th Congress of the International Council of the Aeronautical Sciences
(
ICAS
), Daejeon, South Korea, Sept. 25–30, pp.
1
20
.https://www.researchgate.net/publication/308722662_Hybrid-Electric_Motive_Power_Systems_for_Commuter_Transport_Applications
61.
Goodger
,
E.
, and
Vere
,
R.
, 1985,
Aviation Fuels Technology
, 1st ed.,
Macmillan publishers Ltd.
,
Stuttgart, Germany
.
62.
EASA
,
2019
, “European Aviation Environmental Report,”
European Aviation Safety Agency
, Cologne, Germany, Report No.
TO-01-18-673-EN-N
.https://op.europa.eu/fr/publication-detail/-/publication/615da9d1-713e-11e9-9f05-01aa75ed71a1/language-en/format-PDF/source-98409756
63.
Cameretti
,
M. C.
,
Del Pizzo
,
A.
,
Di Noia
,
L. P.
,
Ferrara
,
M.
, and
Pascarella
,
C.
,
2018
, “
Modeling and Investigation of a Turboprop Hybrid Electric Propulsion System
,”
Aerosp. J.
,
5
(
4
), p.
123
.10.3390/aerospace5040123
64.
Saenger
,
P.
,
Devillers
,
N.
,
Deschinkel
,
K.
,
Pera
,
M.-C.
,
Couturier
,
R.
, and
Gustin
,
F.
,
2017
, “
Optimization of Electrical Energy Storage System Sizing for an Accurate Energy Management in an Aircraft
,”
IEEE Trans. Veh. Technol.
,
66
(
7
), pp.
5572
5583
.10.1109/TVT.2016.2617288
65.
NASA
, 2015-2016, “
Featured NASA Software: OpenVSP
,”
NASA
, Washington, DC, accessed Sept. 9, 2019, Software.nasa.gov/featuredsoftware/openvsp
66.
Panasonic
, “
Datasheet on the Cell Specifications for Sanyo NCR18650GA
,”
Panasonic
, Osaka, Japan.
67.
Zhang
,
D.
,
He
,
J.
, and
Pan
,
D.
,
2018
, “
A Megawatt-Scale Medium-Voltage High Efficiency High Power Density “SiC + Si” Hybrid Three-Level ANPC Inverter for Aircraft Hybrid-Electric Propulsion Systems
,” IEEE Energy Conversion Congress and Exposition (
ECCE
), Portland, OR, Sept. 23–27.10.1109/ECCE.2018.8558199
You do not currently have access to this content.