Abstract

High-g combustor (HGC) is a significant branch of the ultracompact combustor, an innovative gas turbine combustor with the ability to shorten the combustor length and improve engine efficiency. To improve the feasibility of the HGC concept, a new HGC was designed to substitute the conventional combustor of a KJ66 small turbine engine. The KJ66 was modified to fit an instrumentation system and test bench to conduct relative experiments. Based on the experiment results, design iterations were conducted relying on simulation methods. The design iteration was comprised of six primary configurations, of which the first four configurations focused on establishing an appropriate high-centrifugal environment to accelerate primary combustion, while the last two modifications focused on improving overall combustion performance. In configuration 4, a pinwheel-shaped swirl inlet was designed to successfully create the high-g environment and balance the flow distribution while bringing insignificant total pressure loss. One modification of configuration 4 was a grid inlet design that divided the inlet channel into several subchannels to constrain the inlet flow and establish an ideal high-g environment. The other modification was a divergent mainstream channel to encourage the dilution process and improve the exit temperature profile. The final design could save at least 1/3 of combustor length while maintaining the same level of performance as the original combustor. Further, the engine was predicted to save at least 12% of the total engine weight and improve at least 14% of the engine thrust-to-weight ratio.

References

1.
Zelina
,
J.
,
Sturgess
,
G.
, and
Shouse
,
D.
,
2004
, “
The Behavior of an Ultra-Compact Combustor (UCC) Based on Centrifugally-Enhanced Turbulent Burning Rates
,”
AIAA
Paper No. 2004-3541.10.2514/6.2004-3541
2.
Lewis
,
G. D.
,
1973
, “
Centrifugal-Force Effects on Combustion
,”
Symp. (Int.) Combust.
,
14
(
1
), pp.
413
419
.10.1016/S0082-0784(73)80040-2
3.
Syred
,
N.
,
Claypole
,
T. C.
, and
Styles
,
A. C.
,
1982
, “
The Role of Centrifugal Force Fields in the Stabilization of Swirling Flames
,”
J. Energy
,
6
(
5
), pp.
344
345
.10.2514/3.48052
4.
Ishizuka
,
S.
,
1985
, “
On the Behavior of Premixed Flames in a Rotating Flow Field: Establishment of Tubular Flames
,”
Symp. (Int.) Combust.
,
20
(
1
), pp.
287
294
.10.1016/S0082-0784(85)80513-0
5.
Sakai
,
Y.
, and
Ishiuka
,
S.
,
1996
, “
The Phenomena of Flame Propagation in a Rotating Tube
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
847
853
.10.1016/S0082-0784(96)80294-3
6.
Gorczakowski
,
A.
,
Zawadzki
,
A.
,
Jarosinski
,
J.
, and
Veyssiere
,
B.
,
2000
, “
Combustion Mechanism of Flame Propagation and Extinction in a Rotating Cylindrical Vessel
,”
Combust. Flame
,
120
(
3
), pp.
359
371
.10.1016/S0010-2180(99)00095-4
7.
Lapsa
,
A.
, and
Dahm
,
W.
,
2007
, “
Experimental Study on the Effects of Large Centrifugal Forces on Step-Stabilized Flames
,”
5th US Combustion Meeting
, San Diego, CA, Mar. 25-28, pp.
3388
3399
. https://www.researchgate.net/publication/276060419_Experimental_Study_on_the_Effects_of_Large_Centrifugal_Forces_on_Step-Stabilized_Flames
8.
Dwyer
,
H. A.
, and
Hasegawa
,
T.
,
2002
, “
Some Flows Associated With Premixed Laminar Flame Propagation in a Rotating Tube Flow
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
1471
1477
.10.1016/S1540-7489(02)80180-8
9.
Katta
,
V.
,
Blunck
,
D.
, and
Roquemore
,
M.
,
2013
, “
Effect of Centrifugal Forces on Flame Stability in an Ultra-Compact Combustor
,”
AIAA
Paper No. 2013-1046.10.2514/6.2013-1046
10.
Briones
,
A. M.
,
Sekar
,
B.
, and
Erdmann
,
T.
,
2014
, “
Effect of Centrifugal Force on Turbulent Premixed Flames
,”
ASME J. Eng. Gas Turbine Power
,
137
(
1
), p.
011501
.10.1115/1.4028057
11.
Long
,
B. S.
,
Briones
,
A. M.
,
Stouffer
,
S. D.
, and
Rankin
,
B. A.
,
2017
, “
Effect of Rayleigh-Taylor Instability on Backward-Facing-Step Stabilized Turbulent Premixed Flames
,”
ASME
Paper No. GT2017-64547.10.1115/GT2017-64547
12.
Liu
,
Y.
,
Wang
,
Z.
, and
Tang
,
H.
,
2020
, “
Numerical Investigation of Turbulent Premixed Combustion in a High Acceleration Field
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p. 041010.10.1115/1.4045677
13.
Chomiak
,
J.
,
Gorczakowski
,
A.
,
Parra
,
T.
, and
Jarosinski
,
J.
,
2007
, “
Flame Kernel Growth in a Rotating Gas
,”
Combust. Sci. Technol.
,
180
(
2
), pp.
391
399
.10.1080/00102200701740964
14.
Sun
,
L.
,
Huang
,
Y.
, and
Ji
,
Y.
,
2017
, “
Theoretical Analysis for the Centrifugal Effect on Premixed Flame Speed in a Closed Tube
,”
Int. J. Hydrogen Energy
,
42
(
29
), pp.
18658
18667
.10.1016/j.ijhydene.2017.04.186
15.
Sirignano
,
W. A.
, and
Liu
,
F.
,
1999
, “
Performance Increases for Gas-Turbine Engines Through Combustion Inside the Turbine
,”
J. Propul. Power
,
15
(
1
), pp.
111
118
.10.2514/2.5398
16.
Guthe
,
F.
,
Hellat
,
J.
, and
Flohr
,
P.
,
2009
, “
The Reheat Concept: The Proven Pathway to Ultralow Emissions and High Efficiency and Flexibility
,”
ASME J. Eng. Gas Turbine Power
,
131
(
2
), p.
021503
.10.1115/1.2836613
17.
Spytek
,
C. J.
,
2012
, “
Application of an Inter-Turbine Burner Using Core Driven Vitiated Air in a Gas Turbine Engine
,”
ASME
Paper No. GT2012-69333.10.1115/GT2012-69333
18.
Hsu
,
K. Y.
,
Goss
,
L. P.
, and
Roquemore
,
W. M.
,
1998
, “
Characteristics of a Trapped-Vortex Combustor
,”
J. Propul. Power
,
14
(
1
), pp.
57
65
.10.2514/2.5266
19.
Briones
,
A. M.
,
Sekar
,
B.
,
Shouse
,
D. T.
,
Blunck
,
D. L.
,
Thornburg
,
H. J.
, and
Erdmann
,
T. J.
,
2015
, “
Reacting Flows in Ultra-Compact Combustors With Combined-Diffuser Flameholder
,”
J. Propul. Power
,
31
(
1
), pp.
238
252
.10.2514/1.B35141
20.
Zhang
,
R. C.
,
Hao
,
F.
, and
Fan
,
W. J.
,
2018
, “
Combustion and Stability Characteristics of Ultra-Compact Combustor Using Cavity for Gas Turbines
,”
Appl. Energy
,
225
, pp.
940
954
.10.1016/j.apenergy.2018.05.084
21.
Zelina
,
J.
,
Greenwood
,
R. T.
, and
Shouse
,
D. T.
,
2006
, “
Operability and Efficiency Performance of Ultra-Compact, High Gravity (g) Combustor Concepts
,”
ASME
Paper No. GT2006-90119.10.1115/GT2006-90119
22.
Zelina
,
J.
,
Shouse
,
D. T.
, and
Hancock
,
R. D.
,
2004
, “
Ultra-Compact Combustors for Advanced Gas Turbine Engines
,”
ASME
Paper No. GT2004-53155.10.1115/GT2004-53155
23.
Sturgess
,
G. J.
,
Zelina
,
J.
,
Shouse
,
D. T.
, and
Roquemore
,
W. M.
,
2005
, “
Emissions Reduction Technologies for Military Gas Turbine Engines
,”
J. Propul. Power
,
21
(
2
), pp.
193
217
.10.2514/1.6528
24.
Yonezawa
,
Y.
,
Toh
,
H.
,
Goto
,
S.
, and
Obata
,
M.
,
1990
, “
Development of the Jet-Swirl High Loading Combustor
,”
AIAA
Paper No. 90-2451.10.2514/6.1990-2451
25.
Greenwood
,
R.
,
Anthenien
,
R.
, and
Zelina
,
J.
,
2005
, “
Computational Analysis of the Ultra Compact Combustor
,”
AIAA
Paper No. 2005-220.10.2514/6.2005-220
26.
Briones
,
A. M.
,
Zelina
,
J.
, and
Katta
,
V. R.
,
2010
, “
Flame Stabilization in Small Cavities
,”
AIAA J.
,
48
(
1
), pp.
224
235
.10.2514/1.44162
27.
Kostka
,
S.
,
Branam
,
R. D.
,
Renfro
,
M. W.
,
Lakusta
,
P. J.
,
Gord
,
J. R.
, and
Roy
,
S.
,
2012
, “
Laser-Induced Fluorescence Measurements of Product Penetration Within an Ultra-Compact-Combustor
,”
J. Propul. Power
,
28
(
3
), pp.
617
624
.10.2514/1.B34092
28.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2013
, “
Analysis of Flow Migration in an Ultra-Compact Combustor
,”
ASME J. Eng. Gas Turbine Power
,
135
(
5
), p.
051502
.10.1115/1.4007866
29.
Wilson
,
J. D.
,
Damele
,
C. J.
, and
Polanka
,
M. D.
,
2014
, “
Flame Structure Effects at High G-Loading
,”
ASME J. Eng. Gas Turbine Power
,
136
(
10
), p.
101502
.10.1115/1.4027128
30.
Conrad
,
M. M.
,
Wilson
,
J. D.
, and
Polanka
,
M. D.
,
2013
, “
Integration Issues of an Ultra-Compact Combustor to a Jet Turbine Engine
,”
AIAA
Paper No. 2013-3711.10.2514/6.2013-3711
31.
Cottle
,
A. E.
,
Polanka
,
M. D.
,
Goss
,
L. P.
, and
Goss
,
C. Z.
,
2016
, “
Investigation of Air Injection and Cavity Size Within a Circumferential Combustor to Increase G-Load and Residence Time
,”
ASME
Paper No. GT2016-56216.10.1115/GT2016-56216
32.
Bohan
,
B. T.
,
Polanka
,
M. D.
, and
Rutledge
,
J. L.
,
2017
, “
Computational Analysis of a Novel Cooling Scheme for Ultra Compact Combustor Turbine Vanes
,”
ASME
Paper No. GT2017-63319. 10.1115/GT2017-63319
33.
DeMarco
,
K. J.
,
Bohan
,
B. T.
,
Polanka
,
M. D.
,
Rutledge
,
J. L.
, and
Akbari
,
P.
,
2019
, “
Analysis of an Additively Manufactured Cooled Ultra Compact Combustor Vane
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
5
), p.
051021
.10.1115/1.4043548
34.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2018
, “
A New Spin on Small-Scale Combustor Geometry
,”
ASME J. Eng. Gas Turbine Power
,
141
(
1
), p.
011504
.10.1115/1.4040658
35.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2019
, “
Experimental Analysis of an Ultra Compact Combustor Powered Turbine Engine
,”
ASME
Paper No. GT2019-90607.10.1115/GT2019-90607
36.
ISO,
2008
, “
Measurement of Fluid Flow in Closed Conduits—Velocity Area Method for Regular Flows Using Pitot Static Tubes
,” ISO, Geneva, Switzerland, Standard No.
ISO:3966
. https://www.iso.org/standard/50626.html
37.
Pioro
,
I. L.
, and
Duffey
,
R. B.
,
2007
, “
Appendix D: Sample of Uncertainty Analysis
,”
Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
,
ASME Press
,
New York
, pp.
247
267
.
38.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
, “
Laminar Premixed Flames
,”
Theoretical and Numerical Combustion
,
Edwards
,
Philadelphia, PA
, pp.
56
58
.
39.
Smith
,
G. P.
,
G
,
D.
,
Frenklach
,
M. M.
,
Moriarty
,
N.
,
Eiteneer
,
W.
,
Goldenberg
,
B.
,
Thomas Bowman
,
M. C.
,
Hanson
,
R.
,
Song
,
K. S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, “
GRI-Mech 3.0
,” University of California at Berkeley, Berkeley, CA, accessed July 12, 2020, http://combustion.berkeley.edu/gri-mech/
40.
Celik
,
I.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C.
,
Coloman
,
H.
, and
Raad
,
P.
,
2008
, “
Procedure of Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
41.
SAE,
2016
, “
Procedure for the Analysis and Evaluation of Gaseous Emissions from Aircraft Engines
,”
SAE
Paper No. 1533.
42.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
, “
Aerodynamics
,”
Gas Turbine Combustion: Alternative Fuels and Emissions
,
CRC Press
,
Boca Raton, FL
, pp.
113
149
.
You do not currently have access to this content.