Abstract

This paper introduces a computationally efficient extrema approach for the probabilistic predictions of creep in finite element analysis (FEA). Component-level probabilistic simulations are needed to assess the reliability and safety of high-temperature components. Full-scale probabilistic creep models in FEA are computationally expensive, requiring many hundreds of simulations to replicate the uncertainty of component failure. Extrema are conditions at which the values of a function are the largest or the smallest. In this study, an extrema approach is proposed. In the extrema approach, full-scale probabilistic simulations are completed in one-dimensional across a wide range of stresses, the results are processed, and extrema conditions are extracted. The extrema conditions alone are applied in two-/three-dimensional FEA to predict the mean and range of creep failure. The probabilistic Sinh model, calibrated for alloy 304 stainless steel, is selected. The sources of uncertainty (i.e., test condition, pre-existing damage, and model constants) are evaluated and probability distribution functions sampling are performed via Monte Carlo method. The extrema conditions considered include the range of creep ductility, rupture, and area under creep curves. The predicted creep response for one- and two-dimensional model shows agreement with the experimental data. It is determined that extrema approach will significantly reduce the computational cost of probabilistic creep predictions in FEA.

References

1.
Zolochevsky
,
A.
,
Martynenko
,
A.
, and
Kühhorn
,
A.
,
2012
, “
Structural Benchmark Creep and Creep Damage Testing for Finite Element Analysis With Material Tension-Compression Asymmetry and Symmetry
,”
Comput. Struct.
,
100–101
, pp.
27
38
.10.1016/j.compstruc.2012.02.021
2.
Wang
,
X. N.
, and
Wang
,
X. C.
,
1996
, “
Finite Element Analysis on Creep Damage
,”
Comput. Struct.
,
60
(
5
), pp.
781
786
.10.1016/0045-7949(95)00435-1
3.
Vojdani
,
A.
,
Farrahi
,
G. H.
,
Mehmanparast
,
A.
, and
Wang
,
B.
,
2018
, “
Probabilistic Assessment of Creep-Fatigue Crack Propagation in Austenitic Stainless Steel Cracked Plates
,”
Eng. Fract. Mech.
,
200
, pp.
50
63
.10.1016/j.engfracmech.2018.07.022
4.
Zentuti
,
N. A.
,
Booker
,
J. D.
,
Bradford
,
R. A. W.
, and
Truman
,
C. E.
,
2018
, “
Correlations Between Creep Parameters and Application to Probabilistic Damage Assessments
,”
Int. J. Pressure Vessels Piping
,
165
, pp.
295
305
.10.1016/j.ijpvp.2018.07.004
5.
Dobeš
,
F.
, and
Milička
,
K.
,
1976
, “
The Relation Between Minimum Creep Rate and Time to Fracture
,”
Met. Sci.
,
10
(
11
), pp.
382
384
.10.1080/03063453.1976.11683560
6.
Dobeš
,
F.
, and
Milička
,
K.
,
2002
, “
On the Monkman-Grant Relation for Small Punch Test Data
,”
Mater. Sci. Eng. A
,
336
(
1–2
), pp.
245
248
.10.1016/S0921-5093(01)01975-X
7.
Loghman
,
A.
, and
Moradi
,
M.
,
2017
, “
Creep Damage and Life Assessment of Thick-Walled Spherical Reactor Using Larson–Miller Parameter
,”
Int. J. Pressure Vessels Piping
,
151
, pp.
11
19
.10.1016/j.ijpvp.2017.02.003
8.
DiMelfi
,
R. J.
,
1978
, “
Comments on: Understanding the Larson–Miller Parameter, by FT Furillo, S Purushothaman and J K Tien
,”
Scr. Metall.
,
12
(
4
), pp.
327
329
.10.1016/0036-9748(78)90291-0
9.
Wilshire
,
B.
, and
Scharning
,
P. J.
,
2008
, “
Extrapolation of Creep Life Data for 1Cr-0.5Mo Steel
,”
Int. J. Pressure Vessels Piping
,
85
(
10
), pp.
739
743
.10.1016/j.ijpvp.2008.04.002
10.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2019
, “
Comparative Analysis of the Sine-Hyperbolic and Kachanov-Rabotnov Creep-Damage Models
,”
Int. J. Pressure Vessels Piping
,
171
, pp.
1
9
.10.1016/j.ijpvp.2019.02.001
11.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2016
, “
Modeling the Creep Deformation, Damage, and Rupture of Hastelloy X Using MPC Omega, Theta, and Sine-Hyperbolic Models
,”
ASME
Paper No. PVP2016-6302910.1115/PVP2016-63029.
12.
Cano
,
J. A.
, and
Stewart
,
C. M.
,
2019
, “
Application of the Wilshire Stress-Rupture and Minimum-Creep-Strain-Rate Prediction Models for Alloys P91 in Tube, Plate, and Pipe Form
,”
ASME
Paper No. GT2019-90625.10.1115/GT2019-90625
13.
Hossain
,
M. A.
,
Cano
,
J. A.
, and
Stewart
,
C. M.
,
2020
, “
Probabilistic Creep Modeling of 304 Stainless Steel Using a Modified Wilshire Creep-Damage Model
,”
ASME
Paper No. PVP2020-21613.10.1115/PVP2020-21613
14.
Hossain
,
M. A.
, and
Stewart
,
C. M.
,
2019
, “
Reliability Prediction of 304 Stainless Steel Using Sine-Hyperbolic Creep-Damage Model With Monte Carlo Simulation Method
,”
ASME
Paper No. PVP2019-93712.10.1115/PVP2019-93712
15.
Hossain
,
M. A.
, and
Stewart
,
C. M.
,
2020
, “
Probabilistic Minimum-Creep-Strain-Rate and Stress-Rupture Prediction for the Long-Term Assessment of IGT Components
,”
ASME
Paper No. GT2020-14870.10.1115/GT2020-14870
16.
Farris
,
J. P.
,
Lee
,
J. D.
,
Harlow
,
D. G.
, and
Delph
,
T. J.
,
1990
, “
On the Scatter in Creep Rupture Times
,”
Metall. Trans. A
,
21
(
1
), pp.
345
352
.10.1007/BF02782414
17.
Penny
,
R. K.
, and
Weber
,
M. A.
,
1992
, “
Robust Methods of Life Assessment During Creep
,”
Int. J. Pressure Vessels Piping
,
50
(
1–3
), pp.
109
131
.10.1016/0308-0161(92)90033-C
18.
Bhattacharya
,
B.
, and
Ellingwood
,
B.
,
1998
, “
Continuum Damage Mechanics-Based Model of Stochastic Damage Growth
,”
J. Eng. Mech.
,
124
(
9
), pp.
1000
1009
.10.1061/(ASCE)0733-9399(1998)124:9(1000)
19.
Hossain
,
M. A.
, and
Stewart
,
C. M.
,
2021
, “
A Probabilistic Creep Model Incorporating Test Condition, Initial Damage, and Material Property Uncertainty
,”
Int. J. Pressure Vessels Piping
,
193
, p.
104446
.10.1016/j.ijpvp.2021.104446
20.
Quintero
,
H.
, and
Mehmanparast
,
A.
,
2016
, “
Prediction of Creep Crack Initiation Behaviour in 316H Stainless Steel Using Stress Dependent Creep Ductility
,”
Int. J. Solids Struct.
,
97–98
, pp.
101
115
.10.1016/j.ijsolstr.2016.07.039
21.
Weiss
,
T.
,
Voigt
,
M.
,
Schlums
,
H.
,
Mü Cke
,
R.
,
Becker
,
K.-H.
, and
Vogeler
,
K.
,
2009
, “
Probabilistic Finite-Element Analyses on Turbine Blades
,”
ASME
Paper No. GT2009-59877.10.1115/GT2009-59877
22.
Tomevenya
,
K. M.
, and
Liu
,
S. J.
,
2018
, “
Probabilistic Fatigue-Creep Life Reliability Assessment of Aircraft Turbine Disk
,”
J. Mech. Sci. Technol.
,
32
(
11
), pp.
5127
5132
.10.1007/s12206-018-1010-2
23.
Gal
,
E.
, and
Fish
,
J.
,
2008
, “
Anisotropic Micromechanical Creep Damage Model for Composite Materials: A Reduced-Order Approach
,”
Int. J. Multiscale Comput. Eng.
,
6
(
2
), pp.
113
121
.10.1615/IntJMultCompEng.v6.i2.10
24.
Reh
,
S.
, and
Scheu
,
M.
,
1996
, “
Sensitivity Controlled Response Surface Approach for Reliability Based Design
,”
ASME
Paper No. 96-GT-268.10.1115/96-GT-268
25.
Kim
,
S. J.
,
Kong
,
Y. S.
,
Roh
,
Y. J.
, and
Kim
,
W. G.
,
2008
, “
Statistical Properties of Creep Rupture Data Distribution for STS304 Stainless Steels
,”
Mater. Sci. Eng. A
,
483–484
(
1–2 C
), pp.
529
532
.10.1016/j.msea.2006.12.153
26.
ASTM
,
2011
, “
Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials
,”
ASTM
, West Conshohocken, PA, Standard No. E139-11.
27.
Stewart
,
C. M.
,
2013
,
A Hybrid Constitutive Model for Creep, Fatigue, and Creep-Fatigue Damage
,
University of Central Florida
, Orlando, FL.
28.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2019
, “
The Disparate Data Problem: The Calibration of Creep Laws Across Test Type and Stress, Temperature, and Time Scales
,”
Theor. Appl. Fract. Mech.
,
100
, pp.
251
268
.10.1016/j.tafmec.2019.01.018
29.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2017
, “
The Stress-Sensitivity, Mesh-Dependence, and Convergence of Continuum Damage Mechanics Models for Creep
,”
ASME J. Pressure Vessels Technol.
,
139
(
4
), p.
041403
.10.1115/1.4036142
30.
H aque
,
M. S.
, and
Stewart
,
C. M.
,
2016
, “
Finite-Element Analysis of Waspaloy Using Sinh Creep-Damage Constitutive Model Under Triaxial Stress State
,”
ASME J. Pressure Vessels Technol.
,
138
(
3
), p.
031408
.10.1115/1.4032704
31.
Hossain
,
M. A.
,
2020
,
A Probabilistic Creep Constitutive Model for Creep Deformation, Damage, and Rupture
,
The University of Texas at El Paso
,
El Paso, TX
.
32.
Lin
,
G.
,
1999
,
ANSYS User Material Subroutine USERMAT
,
ANSYS
,
Canonsburg, PA
.
33.
Eagle National Steel, LTD
,
2021
, accessed July 30, 2021, https://eaglesteel.com/wp-content/uploads/2016/04/304_Stainless_Steel.pdf
34.
Mao
,
H.
, and
Mahadevan
,
S.
,
2000
, “
Reliability Analysis of Creep-Fatigue Failure
,”
Int. J. Fatigue
,
22
(
9
), pp.
789
797
.10.1016/S0142-1123(00)00046-3
35.
Davies
,
R. B.
,
Hales
,
R.
,
Harman
,
J. C.
, and
Holdsworth
,
S. R.
,
1999
, “
Statistical Modeling of Creep Rupture Data
,”
ASME J. Eng. Mater.
,
121
(
3
), pp.
264
271
.10.1115/1.2812374
36.
ASTM Standard
,
2004
,
E8. Standard Test Method for Tension Testing of Metallic Materials
,
ASTM
,
West Conshohocken, PA
.
37.
Thacker
,
B. H.
,
Riha
,
D. S.
,
Fitch
,
S. H. K.
,
Huyse
,
L. J.
, and
Pleming
,
J. B.
,
2006
, “
Probabilistic Engineering Analysis Using the NESSUS Software
,”
Struct. Saf.
,
28
(
1–2
), pp.
83
107
.10.1016/j.strusafe.2004.11.003
38.
Stewart
,
C. M.
, and
Gordon
,
A. P.
,
2012
, “
Constitutive Modeling of Multistage Creep Damage in Isotropic and Transversely Isotropic Alloys With Elastic Damage
,”
ASME J. Pressure Vessels Technol.
,
134
(
4
), p. 041401.10.1115/1.4005946
39.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2017
, “
Selection of Representative Stress Function Under Multiaxial Stress State Condition for Creep
,”
ASME
Paper No. PVP2017-65296.10.1115/PVP2017-65296
You do not currently have access to this content.