Abstract

In this study, a qualification of accelerated creep-resistance of Inconel 718 is assessed using the novel Wilshire–Cano–Stewart (WCS) model and the stepped isostress method (SSM) and predictions are made to conventional creep data. Conventional creep testing is a long-term continuous process; in fact, the ASME B&PV III requires that 10,000+ h of experiments must be conducted to each heat for materials employed in boilers and/or pressure vessel components. This process is costly and not feasible for rapid development of new materials. As an alternative, accelerated creep testing techniques have been developed to reduce the time needed to characterize the creep resistance of materials. Most techniques are based upon the time-temperature-stress superposition principle that predicts minimum-creep-strain-rate (MCSR) and stress-rupture behaviors but lack the ability to predict creep deformation and consider deformation mechanisms that occur for experiments of longer duration. The SSM has been developed, which enables the prediction of creep deformation response as well as reduce the time needed for qualification of materials. The SSM approach has been successful for polymer, polymeric composites, and recently has been introduced for metals. In this study, the WCS constitutive model, calibrated to SSM test data, qualifies the creep resistance of Inconel 718 at 750 °C and predictions are compared to conventional creep testing data. The WCS model has proven to make long-term predictions for stress-rupture, MCSR, creep deformation, and damage in metallic materials. The SSM varies stress levels after time interval adding damage to the material, which can be tracked by the WCS model. The SSM data is calibrated into the model and the WCS model generates realistic predictions of stress-rupture, MSCR, damage, and creep deformation. The calibrated material constants are used to generate predictions of stress-rupture and are postaudit validated using the National Institute of Material Science database. Similarly, the MCSR predictions are compared from previous studies. Finally, the creep deformation predictions are compared with real data and is determined that the results are well in between the expected boundaries. Material characterization and mechanical properties can be determined at a faster rate and with a more cost-effective method. This is beneficial for multiple applications such as in additive manufacturing, composites, spacecraft, and industrial gas turbines.

References

1.
Takasawa
,
K.
, and
Miki
,
K.
,
2018
, “
Development of High- and Intermediate-Pressure Steam Turbine Rotors for Efficient Fossil Power Generation Technology
,” The Japan Steel Works, Muroran, Hokkaidō, Japan, Review No. 20.
2.
Purgert
,
R.
,
Phillips
,
J.
,
Hendrix
,
H.
,
Shingledecker
,
J.
, and
Tanzosh
,
J.
,
2016
, “
Materials for Advanced Ultrasupercritical Steam Turbines—Advanced Ultra-Supercritical Component Demonstration
,” U.S. Department of Energy, Independence, OH, Report No.
DE-FE0026294
.https://www.osti.gov/servlets/purl/1332274
3.
ASME
,
2015
, “
ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NH—Class 1
,” Components in Elevated Temperature Service, New York.
4.
Hossain
,
M. A.
,
Cano
,
J. A.
, and
Stewart
,
C. M.
,
2020
, “
Probabilistic Creep Modeling of 304 Stainless Steel Using a Modified Wilshire Creep-Damage Model
,”
ASME
Paper No. PVP2020-21613.10.1115/P VP2020-21613
5.
Verma
,
A. K.
,
Hawk
,
J. A.
,
Romanov
,
V.
, and
Carter
,
J. L.
,
2020
, “
Predictions of Long-Term Creep Life for the Family of 9–12 wt% Cr Martensitic Steels
,”
J. Alloys Compd.
,
815
, p.
152417
.10.1016/j.jallcom.2019.152417
6.
National Science and Technology Council,
2016
,
Advanced Manufacturing: A Snapshot of Priority Technology Areas Across the Federal Government
,
Office of Science and Technology Policy
,
Washington, DC
.
7.
Viswanathan
,
R.
, and
Foulds
,
J.
,
1998
, “
Accelerated Stress Rupture Testing for Creep Life Prediction—Its Value and Limitations
,”
ASME J. Pressure Vessel Technol.
,
120
(
2
), pp.
105
115
.10.1115/1.2842227
8.
Nakada
,
M.
,
2019
, “
Accelerated Testing Methodology for Long-Term Creep and Fatigue Strengths of Polymer Composites
,”
Creep and Fatigue in Polymer Matrix Composites
,
Woodhead Publishing
, Hakusan, Japan, pp.
325
348
.
9.
Luo
,
W.
,
Wang
,
C.
,
Hu
,
X.
, and
Yang
,
T.
,
2012
, “
Long-Term Creep Assessment of Viscoelastic Polymer by Time-Temperature-Stress Superposition
,”
Acta Mech. Solida Sin.
,
25
(
6
), pp.
571
578
.10.1016/S0894-9166(12)60052-4
10.
Peng
,
Q.
,
Zhu
,
Z.
,
Jiang
,
C.
, and
Jiang
,
H.
,
2019
, “
Effect of Stress Relaxation on Accelerated Physical Aging of Hydrogenated Nitrile Butadiene Rubber Using Time-Temperature-Strain Superposition Principle
,”
Adv. Ind. Eng. Polym. Res.
,
2
(
2
), pp.
61
68
.10.1016/j.aiepr.2019.03.002
11.
Jazouli
,
S.
,
Luo
,
W.
,
Bremand
,
F.
, and
Vu-Khanh
,
T.
,
2005
, “
Application of Time–Stress Equivalence to Nonlinear Creep of Polycarbonate
,”
Polym. Test.
,
24
(
4
), pp.
463
467
.10.1016/j.polymertesting.2005.01.002
12.
Luo
,
W. B.
,
Yang
,
T. Q.
, and
An
,
Q.
,
2001
, “
Time-Temperature-Stress Equivalence and Its Application to Nonlinear Viscoelastic Materials
,”
Acta Mech. Solida Sin.
, 14(
3
), pp.
195
199
.http://www.polymer.cn/UploadFile/research/200909031643502812.pdf
13.
Luo
,
W. B.
,
Wang
,
C. H.
, and
Zhao
,
R. G.
,
2007
, “
Application of Time-Temperature-Stress Superposition Principle to Nonlinear Creep of Poly (Methyl Methacrylate
),”
Key Eng. Mater.
,
340–341
, pp.
1091
1096
.10.4028/www.scientific.net/KEM.340-341.1091
14.
Giannopoulos
,
I. P.
, and
Burgoyne
,
C. J.
,
2011
, “
Prediction of the Long-Term Behavior of High Modulus Fibers Using SSM
,”
J. Mater. Sci.
,
46
(
24
), pp.
7660
7671
.10.1007/s10853-011-5743-x
15.
Giannopoulos
,
I. P.
, and
Burgoyne
,
C. J.
,
2012
, “
Accelerated and Real‐Time Creep and Creep‐Rupture Results for Aramid Fibers
,”
J. Appl. Polym. Sci.
,
125
(
5
), pp.
3856
3870
.10.1002/app.36707
16.
Tanks
,
J. D.
,
Rader
,
K.
, and
Sharp
,
S. R.
,
2015
, “
Accelerated Creep Testing of CFRP With the Stepped Isostress Method
,”
Mechanics of Composite and Multi-Functional Materials
, Vol.
7
,
K.
Zimmerman
, ed.,
Springer International Publishing
, Charlottesville, VA.
17.
Tanks
,
J.
,
Rader
,
K.
,
Sharp
,
S.
, and
Sakai
,
T.
,
2017
, “
Accelerated Creep and Creep-Rupture Testing of Transverse Unidirectional Carbon/Epoxy Lamina Based on the Stepped Isostress Method
,”
Compos. Struct.
,
159
, pp.
455
462
.10.1016/j.compstruct.2016.09.096
18.
Hadid
,
M.
,
Guerira
,
B.
,
Bahri
,
M.
, and
Zouani
,
A.
,
2014
, “
Assessment of the Stepped Isostress Method in the Prediction of Long-Term Creep of Thermoplastics
,”
Polym. Test.
,
34
, pp.
113
119
.10.1016/j.polymertesting.2014.01.003
19.
Stewart
,
C. M.
,
Hossain
,
M. A.
,
Mach
,
R.
,
Pellicote
,
J.
,
Alexander
,
D.
, and
Siddiqui
,
S. F.
,
2020
,
Accelerated Creep Testing of Inconel 718 Using the Stepped Isostress Method (SSM). Material Performance and Characterization
,
ASTM
, West Conshohocken, PA.
20.
Mach
,
R.
,
Pellicotte
,
J.
,
Haynes
,
A.
, and
Stewart
,
C.
,
2019
, “
Assessment of Long Term Creep Using Strain Rate Matching From the Stepped Isostress Method
,”
ASME
Paper No. GT2019-91137.10.1115/GT2019-91137
21.
NIMS
,
2011
,
NIMS Creep Data Sheet No.59—Data Sheets on the Elevated-Temperature Properties of Nickel Based 19Cr-18Fe-3Mo-5Nb-Ti-Al Corrosion-Resisting and Heat-Resisting Superalloy Bars (JIS NCF 718-B)
,
National Institute for Materials Science
, Tsukuba, Japan.
22.
McKamey
,
C. G.
,
George
,
E. P.
,
Liu
,
C. T.
,
Horton
,
J. A.
,
Carmichael
,
C. A.
,
Kennedy
,
R. L.
, and
Cao
,
W. D.
,
2000
,
Manufacturing on Nickel-Base Superalloys With Improved High Temperature Performance
,
Oak Ridge National Laboratory
,
Lockheed Martin
, Oak Ridge, TN.
23.
Asadi
,
M.
,
Guillot
,
D.
,
Weck
,
A.
,
Hegde
,
S. R.
,
Koul
,
A. K.
,
Sawatzky
,
T.
, and
Saari
,
H.
,
2012
, “
Constructing a Validated Deformation Mechanisms Map Using Low Temperature Creep Strain Accommodation Processes for Nickel-Base Alloy 718
,”
ASME
Paper No. PVP2012-78092.10.1115/P VP2012-78092
24.
Zhang
,
H.
,
Zhang
,
K.
,
Lu
,
Z.
,
Zhao
,
C.
, and
Yang
,
X.
,
2014
, “
Hot Deformation Behavior and Processing Map of a γ′-Hardened Nickel-Based Superalloy
,”
Mater. Sci. Eng.: A
,
604
, pp.
1
8
.10.1016/j.msea.2014.03.015
25.
Ni
,
T.
, and
Dong
,
J.
,
2017
, “
Creep Behaviors and Mechanisms of Inconel718 and Allvac718plus
,”
Mater. Sci. Eng.: A
,
700
, pp.
406
415
.10.1016/j.msea.2017.06.032
26.
Gujrati
,
R.
,
Gupta
,
C.
,
Jha
,
J. S.
,
Mishra
,
S.
, and
Alankar
,
A.
,
2019
, “
Understanding Activation Energy of Dynamic Recrystallization in Inconel 718
,”
Mater. Sci. Eng.: A
,
744
, pp.
638
651
.10.1016/j.msea.2018.12.008
27.
Chaturvedi
,
M. C.
, and
Han
,
Y.
,
1989
,
Creep Deformation of Alloy
, Vol.
718
,
Institute of Aeronautical Materials
, Winnipeg, MB, Canada.
28.
Cedro
,
V.
,
Garcia
,
C.
, and
Render
,
M.
,
2018
, “
Use of the Wilshire Equations to Correlate and Extrapolate Creep Data of HR6W and Sanicro 25
,”
Materials
,
11
(
9
), p.
1585
.10.3390/ma11091585
29.
Cano
,
J. A.
, and
Stewart
,
C. M.
,
2021
, “
A Continuum Damage Mechanics (CDM) Based Wilshire Model for Creep Deformation, Damage, and Rupture Prediction
,”
Mater. Sci. Eng. A
,
799
, p.
140231
.10.1016/j.msea.2020.140231
You do not currently have access to this content.