Abstract

In order to determine the flame transfer function of a combustion system, different mechanisms have been identified that need to be modeled. This study focuses on the generation and propagation of one of these mechanisms, namely, the swirl fluctuations downstream of a radial swirl combustor under isothermal conditions. Swirl fluctuations are generated experimentally by imposing acoustic perturbations. Time-resolved longitudinal and crosswise particle image velocimetry (PIV) measurements are conducted inside the mixing tube and combustion chamber to quantify the evolution of the swirl fluctuations. The measured flow response is decomposed using spectral proper orthogonal decomposition to unravel the contributions of different dynamical modes. In addition a resolvent analysis is conducted based on the linearized Navier–Stokes equations to reveal the intrinsically most amplified flow structures. Both, the data-driven and analytic approach, show that inertial waves are indeed present in the flow response and an inherent flow instability downstream of the swirler, which confirms recent theoretical works on inertial waves. However, the contribution of the identified inertial waves to the total swirl fluctuations turns out to be very small. This is suggested to be due to the very structured forcing at the swirler and the additional amplification of shear-driven modes. Overall, this work confirms the presence of inertial waves in highly turbulent swirl combustors and evaluates its relevance for industry-related configurations. It further outlines a methodology to analyze and predict their characteristics based on mean fields only, which is applicable for complex geometries of industrial relevance.

References

1.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
, American Institute of Aeronautics and Astronautics, Reston, VA.
2.
Rayleigh
,
J. W. S.
, July 18,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
, pp.
319
321
.10.1038/018319a0
3.
Paschereit
,
C.
,
Gutmark
,
E.
, and
Weisenstein
,
W.
,
1998
, “
Structure and Control of Thermoacoustic Instabilities in a Gas-Turbine Combustor
,”
Combust. Sci. Technol.
,
138
(
1–6
), pp.
213
232
.10.1080/00102209808952069
4.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2010
, “
The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
157
(
9
), pp.
1698
1717
.10.1016/j.combustflame.2010.02.011
5.
Oberleithner
,
K.
,
Schimek
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Shear Flow Instabilities in Swirl-Stabilized Combustors and Their Impact on the Amplitude Dependent Flame Response: A Linear Stability Analysis
,”
Combust. Flame
,
162
(
1
), pp.
86
99
.10.1016/j.combustflame.2014.07.012
6.
Bluemner
,
R.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2019
, “
Generation and Transport of Equivalence Ratio Fluctuations in an Acoustically Forced Swirl Burner
,”
Combust. Flame
,
209
, pp.
99
116
.10.1016/j.combustflame.2019.07.007
7.
Lieuwen
,
T.
, and
Zinn
,
B. T.
,
1998
, “
Theoretical Investigation of Combustion Instability Mechanisms in Lean Premixed Gas Turbines
,”
AIAA
Paper No. 98-0641.10.2514/6.98-0641
8.
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2005
, “
Combustion Dynamics of Inverted Conical Flames
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
1717
1724
.10.1016/j.proci.2004.08.067
9.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Acoustic-Convective Mode Conversion in an Aerofoil Cascade
,”
J. Fluid Mech.
,
672
, pp.
545
569
.10.1017/S0022112010006142
10.
Gallaire
,
F.
, and
Chomaz
,
J.-M.
,
2003
, “
Instability Mechanisms in Swirling Flows
,”
Phys Fluids
,
15
(
9
), pp.
2622
2639
.10.1063/1.1589011
11.
Komarek
,
T.
, and
Polifke
,
W.
,
2010
, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061503
.10.1115/1.4000127
12.
Albayrak
,
A.
,
Bezgin
,
D. A.
, and
Polifke
,
W.
,
2018
, “
Response of a Swirl Flame to Inertial Waves
,”
Int. J. Spray Combust. Dyn.
,
10
(
4
), pp.
277
286
.10.1177/1756827717747201
13.
Palies
,
P.
,
Schuller
,
T.
,
Durox
,
D.
,
Gicquel
,
L. Y. M.
, and
Candel
,
S.
,
2011
, “
Acoustically Perturbed Turbulent Premixed Swirling Flames
,”
Phys Fluids
,
23
(
3
), p.
037101
.10.1063/1.3553276
14.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Experimental Study on the Effect of Swirler Geometry and Swirl Number on Flame Describing Functions
,”
Combust. Sci. Technol.
,
183
(
7
), pp.
704
717
.10.1080/00102202.2010.538103
15.
Acharya
,
V. S.
, and
Lieuwen
,
T. C.
,
2014
, “
Role of Azimuthal Flow Fluctuations on Flow Dynamics and Global Flame Response of Axisymmetric Swirling Flames
,”
AIAA
Paper No. 2014-0654.10.2514/6.2014-0654
16.
Albayrak
,
A.
,
Juniper
,
M. P.
, and
Polifke
,
W.
,
2019
, “
Propagation Speed of Inertial Waves in Cylindrical Swirling Flows
,”
J. Fluid Mech.
,
879
, pp.
85
120
.10.1017/jfm.2019.641
17.
Paschereit
,
C. O.
,
Schuermans
,
B.
,
Polifke
,
W.
, and
Mattson
,
O.
,
2002
, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
124
(
2
), pp.
239
247
.10.1115/1.1383255
18.
Ćosić
,
B.
,
Terhaar
,
S.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
,
2014
, “
Response of a Swirl-Stabilized Flame to Simultaneous Perturbations in Equivalence Ratio and Velocity at High Oscillation Amplitudes
,”
Combust. Flame
, 162(4), pp.
1046
1062
.10.1016/j.combustflame.2014.09.025
19.
Beér
,
J.
, and
Chigier
,
N.
,
1972
,
Combustion Aerodynamics. Fuel and Energy Science Series
,
Applied Science Publishers Limited
, London, UK.
20.
Raffel
,
M.
,
Willert
,
C. E.
,
Scarano
,
F.
,
Kähler
,
C. J.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2018
,
Particle Image Velocimetry: A Practical Guide
,
Springer
, Berlin, Heidelberg.
21.
Soria
,
J.
,
1996
, “
An Investigation of the Near Wake of a Circular Cylinder Using a Video-Based Digital Cross-Correlation Particle Image Velocimetry Technique
,”
Exp. Therm Fluid Sci.
,
12
(
2
), pp.
221
233
.10.1016/0894-1777(95)00086-0
22.
Huang
,
H. T.
,
Fiedler
,
H. E.
, and
Wang
,
J. J.
,
1993
, “
Limitation and Improvement of PIV
,”
Exp. Fluids
,
15-15
(
4–5
), pp.
263
273
.10.1007/BF00223404
23.
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2016
, “
Modeling Flame Describing Functions Based on Hydrodynamic Linear Stability Analysis
,”
ASME
Paper No. GT2016-57316.10.1115/GT2016-57316
24.
Lumley
,
J. L.
,
1967
,
Atmospheric Turbulence and Radio Wave Propagation
,
Elsevier Publishing
,
Nauka, Moscow
.
25.
Karami
,
S.
, and
Soria
,
J.
,
2018
, “
Analysis of Coherent Structures in an Under-Expanded Supersonic Impinging Jet Using Spectral Proper Orthogonal Decomposition (SPOD)
,”
Aerospace
,
5
(
3
), p.
73
.10.3390/aerospace5030073
26.
Schmidt
,
O. T.
,
Towne
,
A.
,
Rigas
,
G.
,
Colonius
,
T.
, and
Brès
,
G. A.
,
2018
, “
Spectral Analysis of Jet Turbulence
,”
J. Fluid Mech.
,
855
, pp.
953
982
.10.1017/jfm.2018.675
27.
Symon
,
S.
,
Sipp
,
D.
, and
McKeon
,
B. J.
,
2019
, “
A Tale of Two Airfoils: Resolvent-Based Modelling of an Oscillator Vs. an Amplifier From an Experimental Mean
,”
J. Fluid Mech.
, 881, pp.
51
83
.10.1017/jfm.2019.747
28.
Abreu
,
L. I.
,
Cavalieri
,
A. V.
,
Schlatter
,
P.
,
Vinuesa
,
R.
, and
Henningson
,
D. S.
,
2020
, “
Spectral Proper Orthogonal Decomposition and Resolvent Analysis of Near-Wall Coherent Structures in Turbulent Pipe Flows
,”
J. Fluid Mech.
,
900
, p. A11.10.1017/jfm.2020.44510.1017/jfm.2020.445
29.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
867
.10.1017/jfm.2018.283
30.
Hussain
,
A. K. M. F.
, and
Reynolds
,
W. C.
,
1970
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow
,”
J. Fluid Mech.
,
41
(
2
), pp.
241
258
.10.1017/S0022112070000605
31.
Reynolds
,
W. C.
, and
Hussain
,
A. K. M. F.
,
1972
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow. Part 3. Theoretical Models and Comparisons With Experiments
,”
J. Fluid Mech.
,
54
(
2
), pp.
263
288
.10.1017/S0022112072000679
32.
Reau
,
N.
, and
Tumin
,
A.
,
2002
, “
On Harmonic Perturbations in a Turbulent Mixing Layer
,”
Eur. J. Mech.-B/Fluids
,
21
(
2
), pp.
143
155
.10.1016/S0997-7546(01)01170-0
33.
Beneddine
,
S.
,
Sipp
,
D.
,
Arnault
,
A.
,
Dandois
,
J.
, and
Lesshafft
,
L.
,
2016
, “
Conditions for Validity of Mean Flow Stability Analysis
,”
J. Fluid Mech.
,
798
, pp.
485
504
.10.1017/jfm.2016.331
34.
Alnæs
,
M. S.
,
Blechta
,
J.
,
Hake
,
J.
,
Johansson
,
A.
,
Kehlet
,
B.
,
Logg
,
A.
,
Richardson
,
C.
,
Ring
,
J.
,
Rognes
,
M. E.
, and
Wells
,
G. N.
,
2015
, “
The Fenics Project Version 1.5
,”
Arch. Numer. Software
,
3
(
100
), pp.
9
23
.10.11588/ans.2015.100.20553
35.
Lehoucq
,
R. B.
,
Sorensen
,
D. C.
, and
Yang
,
C.
,
1998
,
ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems With Implicitly Restarted Arnoldi Methods
,
Siam
, Philadelphia, PA.
36.
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
2001
,
Stability and Transition in Shear Flows
, Vol.
142
,
Springer Science & Business Media, New York
.
You do not currently have access to this content.