Abstract

Gas transmission networks have been and continue to be the most efficient method for transporting natural gas. As hydrogen begins to emerge as one possible solution of renewable energy and starts mixing into gas networks, now more than ever, efficient operation is paramount. Part of the efficient pipeline operation puzzle is knowing how much power is available at a given compressor station, which constrains the head and flow that can be produced. In the literature, the driver is often neglected in implementations of pipeline optimization problems. This paper derives and implements driver constraints relating to gas pipeline optimization problems such as throughput maximization and consumed fuel minimization at the pipeline level. The addition of these constraints ensures that solutions are not only bounded by surge and stonewall curves as well as compressor speed, but also by available power from the driver given current ambient conditions. The modified optimization problem results in more accurate solutions of pipeline optimization problems.

References

1.
Demissie
,
A.
,
Zhu
,
W.
, and
Belachew
,
C.
,
2017
, “
A Multi-Objective Optimization Model for Gas Pipeline Operations
,”
Comput. Chem. Eng.
,
100
, pp.
94
103
.10.1016/j.compchemeng.2017.02.017
2.
Kurz
,
R.
, and
Brun
,
K.
,
2012
, “
Upstream and Midstream Compression Applications: Part 1-Applications
,”
ASME
Paper No. GT2012-68005.10.1115/GT2012-68005
3.
Ríos-Mercado
,
R.
, and
Borraz-Sánchez
,
C.
,
2015
, “
Optimization Problems in Natural Gas Transportation Systems: A State-of-the-Art Review
,”
Appl. Energy
,
147
, pp.
536
555
.10.1016/j.apenergy.2015.03.017
4.
Kurz
,
R.
,
2019
, “
Optimization of Compressor Stations
,”
J. Global Power Propul. Soc.
,
3
, pp.
668
674
.10.33737/jgpps/112399
5.
Allison
,
T.
,
Klaerner
,
J.
,
Cich
,
S.
,
Kurz
,
R.
, and
McBain
,
M.
,
2021
, “
Power and Compression Analysis of Power-to-Gas Implementations in Natural Gas Pipelines With Up to 100% Hydrogen Concentration
,”
ASME
Paper No. GT2021-59398. 10.1115/GT2021-59398
6.
Botros
,
K.
,
Sennhauser
,
D.
,
Jungowski
,
K.
,
Poissant
,
G.
,
Golshan
,
H.
, and
Stoffregen
,
J.
,
2004
, “
Multi-Objective Optimization of Large Pipeline Networks Using Genetic Algorithm
,”
ASME
Paper No. GT2011-46841. 10.1115/GT2011-46841
7.
Wu
,
X.
,
Li
,
C.
,
He
,
Y.
, and
Jia
,
W.
,
2018
, “
Operation Optimization of Natural Gas Transmission Pipelines Based on Stochastic Optimization Algorithms: A Review
,”
Math. Probl. Eng.
,
2018
, pp.
1
18
.10.1155/2018/1267045
8.
Kurz
,
R.
, and
Brun
,
K.
,
2010
, “
Assessment of Compressors in Gas Storage Applications
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
062402
.10.1115/1.4000147
9.
Hiller
,
B.
,
Koch
,
T.
,
Schewe
,
L.
,
Schwarz
,
R.
, and
Schweiger
,
J.
,
2018
, “
A System to Evaluate Gas Network Capacities: Concepts and Implementation
,”
Eur. J. Oper. Res.
,
270
(
3
), pp.
797
808
.10.1016/j.ejor.2018.02.035
10.
Wu
,
S.
,
Rios-Mercado
,
R.
,
Boyd
,
E.
, and
Scott
,
L.
,
2000
, “
Model Relaxations for the Fuel Cost Minimization of Steady-State Gas Pipeline Networks
,”
Math. Comput. Modell.
,
31
(
2–3
), pp.
197
220
.10.1016/S0895-7177(99)00232-0
11.
Xue
,
M.
,
Deng
,
T.
, and
Liu
,
D.
,
2016
, “
Cnpc Uses an Iterative Two-Stage Convex Relaxation Approach to Operate Natural Gas Pipelines
,”
Interfaces
,
46
(
6
), pp.
533
546
.10.1287/inte.2016.0867
12.
Hawryluk
,
A.
,
Botros
,
K.
,
Golshan
,
H.
, and
Huynh
,
B.
,
2010
, “
Multi-Objective Optimization of Natural Gas Compression Power Train With Genetic Algorithms
,”
ASME
Paper No. IPC2010-31017. 10.1115/IPC2010-31017
13.
Borraz-Sánchez
,
C.
, and
Haugland
,
D.
,
2013
, “
Optimization Methods for Pipeline Transportation of Natural Gas With Variable Specific Gravity and Compressibility
,”
Sociedad de Estadística e Investigación Operativa 2011
,
21
(
3
), pp.
524
541
.10.1007/s11750-011-0210-z
14.
Ríos-Mercado
,
R.
,
Kim
,
S.
, and
Boyd
,
E.
,
2006
, “
Efficient Operation of Natural Gas Transmission Systems: A Network-Based Heuristic for Cyclic Structures
,”
Comput. Oper. Res.
,
33
(
8
), pp.
2323
2351
.10.1016/j.cor.2005.02.003
15.
De Wolf
,
D.
, and
Smeers
,
Y.
,
2000
, “
The Gas Transmission Problem Solved by an Extension of the Simplex Algorithm
,”
Manage. Sci.
,
46
(
11
), pp.
1454
1465
.10.1287/mnsc.46.11.1454.12087
16.
Carter
,
R. G.
,
1998
, “
Pipeline Optimization: Dynamic Programming After 30 Years
,”
ASME
Paper No. 87-GT-260.10.1115/87-GT-260
17.
Menon
,
E. S.
,
2005
,
Gas Pipeline Hydraulics
,
CRC Taylor and Francis Group
, Abingdon, UK.
18.
Crane Company
,
1988
,
Flow of Fluids Through Valves, Fittings, and Pipe
, Technical Paper No. 410,
Crane Company
, New York.
19.
Schmidt
,
M.
,
Steinbach
,
M.
, and
Willert
,
B.
,
2015
, “
The Precise Nlp Model
,”
Evaluating Gas Network Capacities
,
T.
Koch
,
B.
Hiller
,
M.
Pfetsch
, and
L.
Schewe
, eds.,
Mathematical Optimization Society - Society for Industrial and Applied Mathematics
, Philadelphia, PA, pp.
181
210
.
20.
Moran
,
M.
,
Shapiro
,
H.
,
Boettner
,
D.
, and
Bailey
,
M.
,
2011
,
Fundamentals of Engineering Thermodynamics
, 7th ed.,
Wiley, Inc
., Hoboken, NJ.
21.
Sapiro
,
L.
,
1995
, “
Centrifugal Compressors: Aero-Thermodynamic Concepts for Selection and Performance Evaluation
,”
Solar Turbines Incorporated
,
San Diego
, CA, 2nd ed., Report No. 1.
22.
Zheng
,
Q.
,
Rebennack
,
S.
,
Iliadis
,
N.
, and
Pardalos
,
P.
,
2010
, “
Optimization Models in the Natural Gas Industry
,”
Handbook of Power Systems I
,
P.
Pardalos
,
S.
Rebennack
,
M.
Pereira
, and
N.
Iliadis
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
121
148
.
23.
Odom
,
F.
, and
Muster
,
G.
,
2009
, “
Tutorial on Modeling of Gas Turbine Driven Centrifugal Compressors
,”
ASME
Paper No. GT2018-75002.10.1115/GT2018-75002
24.
Allen
,
C.
,
Holcomb
,
C.
, and
de Oliveira
,
M.
,
2019
, “
Estimating Recoverable Performance Degradation Rates and Optimizing Maintenance Scheduling
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011032
.10.1115/1.4041004
25.
Allen
,
C.
,
Balaji
,
P.
,
Holcomb
,
C.
, and
de Oliveira
,
M.
,
2020
, “
Axial Compressor Fouling and Its Effect on Gas Turbine Fuel Consumption and Emissions
,”
ASME
Paper No. GT2020-16089.10.1115/GT2020-16089
26.
Allen
,
C.
,
Holcomb
,
C.
,
Zamotorin
,
R.
, and
Kurz
,
R.
,
2021
, “
Optimal Parameter Estimation for Efficient Transient Pipeline Simulation
,”
ASME
Paper No. GT2016-56301.
10.1115/GT2016-56301
27.
Boyd
,
S.
,
Boyd
,
S. P.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
, Cambridge, UK.
28.
Burnes
,
D.
, and
Camou
,
A.
,
2019
, “
Impact of Fuel Composition on Gas Turbine Engine Performance
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101006
.10.1115/1.4044238
29.
Bainier
,
F.
, and
Kurz
,
R.
,
2019
, “
Impacts of h2 Blending on Capacity and Efficiency on a Gas Transport Network
,”
ASME
Paper No. GT2019-90348. 10.1115/GT2019-90348
You do not currently have access to this content.