Abstract

This study deals with the optimization of performance for a hybrid-electric propulsion system. It focuses on the modeling and power management frameworks, while evaluation is done on a single flight basis. The main objective is to extract the maximum out of the novel powertrain archetype. Two hybridization factors are considered. The pair helps to describe the degree of hybridization at the power supply and power consumption levels. Their revised mathematical definition facilitates a unique method of hybrid-electric propulsion system modeling that maximizes the conveyed amount of information. An in-house computational tool is developed. It employs a genetic algorithm optimizer in the interest of managing power usage during flight. Energy consumption is set as the objective function. The operation of a 19-seater, commuter aircraft is investigated. Turbo-electric, series-hybrid, parallel-hybrid, and series-parallel variants are derived from a generic composition. An analysis on their optimized performance, with different technological readiness levels for 2020 and 2035, is aimed at identifying where each system performs best. Considering 2020 technology, it does not yield a viable hybrid-electric configuration, without suffering significant payload penalties. Architectures relying on mechanical propulsors show promise of 15% reduction to energy consumption, accounting for 2035 readiness levels. The concepts of Boundary Layer Ingestion and Distributed Propulsion display the potential to boost electrified propulsion. The series-hybrid and series-parallel configurations are the primary beneficiaries of these concepts, displaying up to 30% reduction in fuel and 20% reduction in energy consumption.

References

1.
United States Federal Aviation Authority,
2021
, “
Aviation Climate Action Plan
,” United States Federal Aviation Authority, accessed Sept. 13, 2022, https://www.faa.gov/sites/faa.gov/files/2021-11/Aviation_Climate_Action_Plan.pdf
2.
Darecki
,
M.
,
King
,
I.
,
Edelstenne
,
C.
,
Ky
,
P.
,
Enders
,
T.
,
Mathieu
,
M.
,
Fernandez
,
E.
, et al.,
2011
,
Flightpath 2050 - Europe's Vision for Aviation Report of the High-Level Group on Aviation Research
,
Publications Office of the European Union
,
Luxembourg
.
3.
Epstein
,
A. H.
, and
O'Flarity
,
S. M.
,
2019
, “
Considerations for Reducing Aviation's CO2 With Aircraft Electric Propulsion
,”
J. Propul. Power
,
35
(
3
), pp.
572
582
.10.2514/1.B37015
4.
Antcliff
,
K. R.
,
Guynn
,
M. D.
,
Marien
,
T. V.
,
Wells
,
D. P.
,
Schneider
,
S. J.
, and
Tong
,
M. T.
,
2016
, “
Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft
,”
AIAA
Paper No. 2016-1028.10.2514/6.2016-1028
5.
Voskuijl
,
M.
,
van Bogaer
,
J.
, and
Rao
,
A. G.
,
2018
, “
Analysis and Design of Hybrid Electric Regional Turboprop Aircraft
,”
CAES Aeronaut. J.
,
9
(
1
), pp.
15
25
.10.1007/s13272-017-0272-1
6.
Finger
,
D. F.
,
Braun
,
C.
, and
Bil
,
C.
,
2018
, “
Case Studies in Initial Sizing for Hybrid-Electric General Aviation Aircraft
,”
AIAA
Paper No. 2018-5005.10.2514/6.2018-5005
7.
Hoelzen
,
J.
,
Liu
,
Y.
,
Bensmann
,
B.
,
Winnefeld
,
C.
,
Elham
,
A.
,
Friedrichs
,
J.
, and
Hanke-Rauschenbach
,
R.
,
2018
, “
Conceptual Design of Operation Strategies for Hybrid Electric Aircraft
,”
Energies
,
11
(
1
), p.
217
.10.3390/en11010217
8.
Schneider
,
M.
,
Dickhoff
,
J.
,
Kusterer
,
K.
,
Visser
,
W.
,
Stumpf
,
E.
,
Hofmann
,
J.-P.
, and
Bohn
,
D.
,
2019
, “
Development of a Gas Turbine Concept for Electric Power Generation in a Commercial Hybrid Electric Aircraft
,”
ASME
Paper No. GT2019-92065
. 10.1115/GT2019-92065
9.
Lammen
,
W.
, and
Vankan
,
J.
,
2020
, “
Energy Optimization of Single Aisle Aircraft With Hybrid Electric Propulsion
,”
AIAA
Paper No. 2020-0505.10.2514/6.2020-0505
10.
Kruger
,
M.
,
Byahut
,
S.
,
Uranga
,
A.
,
Gonzalez
,
J.
,
Hall
,
D. K.
, and
Dowdle
,
A.
,
2018
, “
Electrified Aircraft Trade-Space Exploration
,”
AIAA
Paper No. 2018-4227.10.2514/6.2018-4227
11.
Dean
,
T. S.
,
Wroblewski
,
G. E.
, and
Ansell
,
P. J.
,
2018
, “
Mission Analysis and Component-Level Sensitivity Study of Hybrid-Electric General-Aviation Propulsion Systems
,”
AIAA
Paper No. 2018-1749.10.2514/6.2018-1749
12.
Hofmann
,
J.-P.
,
Stumpf
,
E.
,
Weintraub
,
D.
,
Koehler
,
J.
,
Pham
,
D.
,
Schneider
,
M.
,
Dickhoff
,
J.
,
Burkhart
,
B.
,
Reiner
,
G.
,
Spiller
,
M.
, and
Werner
,
E. A.
,
2019
, “
A Comprehensive Approach to the Assessment of a Hybrid Electric Powertrain for Commuter Aircraft
,”
AIAA
Paper No. 2019-3678.10.2514/6.2019-3678
13.
Perullo
,
C.
, and
Mavris
,
D.
,
2014
, “
A Review of Hybrid-Electric Energy Management and Its Inclusion in Vehicle Sizing
,”
Aircr. Eng. Aerosp. Technol.: An Int. J.
,
86
(
6
), pp.
550
557
.10.1108/AEAT-04-2014-0041
14.
Wall
,
T. J.
, and
Meyer
,
R. T.
,
2017
, “
A Survey of Hybrid Electric Propulsion for Aircraft
,”
AIAA
Paper No. 2017-4700.10.2514/6.2017-4700
15.
Bai
,
M.
,
Yang
,
W.
,
Song
,
D.
,
Kosuda
,
M.
,
Szabo
,
S.
,
Lipovsky
,
P.
, and
Kasaei
,
A.
,
2020
, “
Research on Energy Management of Hybrid Unmanned Aerial Vehicles to Improve Energy-Saving and Emission Reduction Performance
,”
Int. J. Environ. Res. Public Health
,
17
(
8
), p.
2917
.10.3390/ijerph17082917
16.
Wetter
,
M.
, and
Wright
,
J.
,
2003
, “
Comparison of a Generalized Pattern Search and a Genetic Algorithm Optimization Method
,”
Proceedings of the Eighth International IBPSA Conference
, Eidhoven, The Netherlands, Aug. 11–14, pp.
1401
1408
. http://www.ibpsa.org/proceedings/BS2003/BS03_1401_1408.pdf
17.
Kruger
,
M.
, and
Uranga
,
A.
,
2020
, “
The Feasibility of Electric Propulsion for Commuter Aircraft
,”
AIAA
Paper No. 2020-1499.10.2514/6.2020-1499
18.
Juretzko
,
P. G.
,
Immer
,
M.
, and
Wildi
,
J.
,
2020
, “
Performance Analysis of a Hybrid-Electric Retrofit of a RUAG Dornier Do228NG
,”
CEAS Aeronaut. J.
,
11
(
1
), pp.
263
275
.10.1007/s13272-019-00420-2
19.
Bozorg-Haddad
,
O.
,
Solgi
,
M.
, and
Loaiciga
,
H. A.
,
2017
,
Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization
,
Wiley
, Hoboken, NJ.
20.
Geiss
,
I.
,
Notter
,
S.
,
Strohmayer
,
A.
, and
Fichter
,
W.
,
2018
, “
Optimized Operation Strategies for Serial Hybrid-Electric
,” 2018 Aviation Technology, Integration, and Operations Conference,
AIAA
Paper No. 2018-4230. 10.2514/6.2018-4230
21.
Pinto Leite
,
J. P. S.
, and
Voskuijl
,
M.
,
2020
, “
Optimal Energy Management for Hybrid-Electric Aircraft
,”
Aircr. Eng. Aerosp. Technol.
,
92
(
6
), pp.
851
861
.10.1108/AEAT-03-2019-0046
22.
Finger
,
D. F.
,
Götten
,
F.
,
Braun
,
C.
, and
Bil
,
C.
,
2020
, “
Mass, Primary Energy, and Cost: The Impact of Optimization Objectives on the Initial Sizing of Hybrid-Electric General Aviation Aircraft
,”
CEAS Aeronaut. J.
,
11
(
3
), pp.
713
730
.10.1007/s13272-020-00449-8
23.
Fefermann
,
Y.
,
Maury
,
C.
,
Level
,
C.
,
Zarati
,
K.
,
Salanne
,
J.-P.
,
Pornet
,
C.
,
Thoraval
,
B.
, and
Isikveren
,
A. T.
,
2016
, “
Hybrid-Electric Motive Power Systems for Commuter Transport Applications
,”
30th Congress of the International Council of the Aeronautical Sciences
, Daejeon, South Korea, Sept. 25–30. https://www.researchgate.net/publication/308722662_Hybrid-Electric_Motive_Power_Systems_for_Commuter_Transport_Applications
24.
Antcliff
,
K. R.
, and
Capristan
,
F. M.
,
2017
, “
Conceptual Design of the Parallel Electric-Gas Architecture With Synergistic Utilization Scheme (PEGASUS) Concept
,”
AIAA
Paper No. 2017-4001.10.2514/6.2017-4001
25.
Cameretti
,
M. C.
,
Del Pizzo
,
A.
,
Di Noia
,
L. P.
,
Ferrara
,
M.
, and
Pascarella
,
C.
,
2018
, “
Modeling and Investigation of a Turboprop Hybrid Electric Propulsion System
,”
Aerospace
,
5
(
4
), p.
123
.10.3390/aerospace5040123
26.
Pornet
,
C.
,
Kaiser
,
S.
, and
Gologan
,
C.
,
2014
, “
Cost-Based Flight Technique Optimization for Hybrid Energy Aircraft
,”
Aircr. Eng. Aerosp. Technol.: An Int. J.
,
86
(
6
), pp.
591
598
.10.1108/AEAT-05-2014-0075
27.
European Aviation Safety Agency (EASA),
2018
, “
Easy Access Rules for Normal, Utility Aerobatic and Commuter Category Aeroplanes (CS-23) (Initial Issue)
,” EASA eRules, European Aviation Safety Agency, Brussels, Belgium.
28.
Nasoulis
,
C. P.
,
Gkoutzamanis
,
V. G.
, and
Kalfas
,
A. I.
,
2022
, “
Multidisciplinary Conceptual Design for a Hybrid-Electric Commuter Aircraft
,”
Aeronaut. J.
,
126
(
1302
), pp.
1242
1264
.10.1017/aer.2022.32
29.
Ye
,
X.
,
Savvaris
,
A.
,
Tsourdos
,
A.
,
Zhang
,
D.
, and
Gu
,
J.
,
2021
, “
Review of Hybrid Electric Powered Aircraft, Its Conceptual Design and Energy Management
,”
Chin. J. Aeronaut.
,
34
(
4
), pp.
432
450
.10.1016/j.cja.2020.07.017
30.
Stückl
,
S.
,
van Toor
,
J.
, and
Lobentanzer
,
H.
,
2012
, “
Voltair - The All Electric Propulsion Concept Platform - A Vision for Atmospheric Friendly Flight
,”
28th International Congress of the Aeronautical Sciences
, Australia, Brisbane, Sept. 23–28, pp.
2737
2747
.https://www.icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/521.PDF
31.
Gkoutzamanis
,
V. G.
,
Kavvalos
,
M. D.
,
Srinivas
,
A.
,
Mavroudi
,
D.
,
Korbetis
,
G.
,
Kyprianidis
,
K. G.
, and
Kalfas
,
A. I.
,
2021
, “
Conceptual Design and Energy Storage Positioning Aspects for a Hybrid-Electric Light Aircraft
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091019
.10.1115/1.4050870
32.
Christensen
,
J.
,
Albertus
,
P.
,
Sanchez-Carrera
,
R. S.
,
Lohmann
,
T.
,
Kozinsky
,
B.
,
Liedtke
,
R.
,
Ahmed
,
J.
, and
Kojic
,
A.
,
2011
, “
A Critical Review of Li/Air Batteries
,”
J. Electrochem. Soc.
,
159
(
2
), pp.
R1
R30
.10.1149/2.086202jes
33.
Mecrow
,
B. C.
,
Atkinson
,
G. J.
,
Bennett
,
J. W.
, and
Atkinson
,
D. J.
,
2012
, “
Overview of Electric Motor Technologies Used for More Electric Aircraft (MEA)
,”
IEEE Trans. Ind. Electron.
,
59
(
9
), pp.
3523
3531
.10.1109/TIE.2011.2165453
34.
Jansen
,
R. H.
,
Bowman
,
C.
,
Jankovsky
,
A.
,
Dyson
,
R.
, and
Felder
,
J.
,
2017
, “
Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports
,” AIAA Propulsion and Energy 2017 Forum,
AIAA
Paper No. 2017-4701.10.2514/6.2017-4701
35.
Tay
,
G.
,
Keller
,
P.
, and
Hornung
,
M.
,
2018
, “
Developmenet of a Software Tool for Comprehensive Flight Performance and Mission Analysis of Hybrid-Electric Aircraft
,”
Transp. Res. Procedia
,
29
, pp.
401
409
.10.1016/j.trpro.2018.02.036
36.
Badger
,
M.
,
Julien
,
A.
,
LeBlanc
,
A. D.
,
Moustapha
,
H.
,
Prabhu
,
A.
, and
Smailys
,
A.
,
1994
, “
The PT6 Engine: 30 Years of Gas Turbine Evolution
,”
ASME J. Eng. Gas Turbines Power
,
116
(
2
), pp.
322
330
.10.1115/1.2906823
37.
FlightSafety International, Inc.,
2000
, “Beech 1900 Airliner Pilot Training Manual,” FlightSafety International, Inc., Marine Air Terminal, LaGuardina Airport, Flushing, New York.
38.
Moore
,
M. D.
, and
Fredericks
,
B.
,
2014
, “
Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Market
,”
AIAA
Paper No. 2014-0535.10.2514/6.2014-0535
39.
Uranga
,
A.
,
Drela
,
M.
,
Hall
,
D. K.
, and
Greitzer
,
E. M.
,
2018
, “
Analysis of the Aerodynamic Benefit From Boundary Layer Ingestion for Transport Aircraft
,”
AIAA J.
,
56
(
11
), pp.
4271
4281
.10.2514/1.J056781
40.
Della Vecchia
,
P.
,
Malgieri
,
D.
,
Nicolosi
,
F.
, and
De Marco
,
A.
,
2018
, “
Numerical Analysis of Propeller Effects on Wing Aerodynamic: Tip Mounted and Distributed Propulsion
,”
Transp. Res. Procedia
,
29
, pp.
106
115
.10.1016/j.trpro.2018.02.010
41.
Raytheon
, “
Beechcraft 1900D Specifications and Performance
,” Raytheon, Wichita, KS.
42.
Cumpsty
,
N.
,
2003
,
Jet Propulsion
,
University of Cambridge Press
,
Cambridge, UK
.
You do not currently have access to this content.