Abstract

Brush seals promise improvements to the widely used labyrinth seal in regulating turbomachinery leakages. Enhanced resistance to the flow is provided by a static ring of densely packed fine wire bristles that are angled in the direction of rotation and flex to accommodate rotor excursions. A large-scale brush seal was constructed to study the leakage characteristics in direct relation to the pressure field within and surrounding the bristle pack for multiple clearance conditions, therefore developing the understanding of brush seal fluid dynamic behavior. The governing parameter controlling leakage behavior transitioned from pressure ratio for a large clearance, to pressure load for a line-on-line configuration. In all cases, leakage flow converged to an asymptotic value once maximum levels of bristle blow-down and pack compaction were attained. For both clearance configurations, this occurred at a pressure ratio corresponding to that at which axial distributions of pressure converged; equivalent behavior was noted for the line-on-line configuration with pressure drop. Comparatively small changes were experienced in leakage behavior and in the interbristle pressure field with increasing pressure drop for the line-on-line brush seal. This indicated that brush seal performance is more influenced by changes in bristle blow-down than bristle pack compaction.

References

1.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
313
349
.10.2514/1.17778
2.
Aslan-Zada
,
F. E.
,
Mammadov
,
V. A.
, and
Dohnal
,
F.
,
2013
, “
Brush Seals and Labyrinth Seals in Gas Turbine Applications
,”
J. Power Energy
,
227
(
2
), pp.
216
230
.10.1177/0957650912464922
3.
Dinc
,
S.
,
Demiroglu
,
M.
,
Turnquist
,
N.
,
Mortzheim
,
J.
,
Goetze
,
G.
,
Maupin
,
J.
,
Hopkins
,
J.
,
Wolfe
,
C.
, and
Florin
,
M.
,
2002
, “
Fundamental Design Issues of Brush Seals for Industrial Applications
,”
ASME J. Turbomach.
,
124
(
2
), pp.
293
300
.10.1115/1.1451847
4.
Ferguson
,
J. G.
,
1988
, “
Brushes as High Performance Gas Turbine Seals
,”
ASME
Paper No. 88-GT-182.10.1115/88-GT-182
5.
Carey
,
C.
,
Inderwildi
,
O.
, and
King
,
D.
,
2009
, “
Sealing Technologies – Signed, Sealed and Delivering Emissions Savings
,”
Aviat. Environ.
, Apr., pp.
44
48
.https://lowcarbonmobility.files.wordpress.com/2010/07/c-carey-2009-sealing-technologies.pdf
6.
Hendricks
,
R. C.
,
Griffin
,
T. A.
,
Kline
,
T. R.
,
Csavina
,
K. R.
,
Pancholi
,
A.
, and
Sood
,
D.
,
1994
, “
Relative Performance Comparison Between Baseline Labyrinth and Dual-Brush Compressor Discharge Seals in a T-700 Engine Test
,”
ASME
Paper No. 94-GT-266.10.1115/94-GT-266
7.
Franceschini
,
G.
,
Jones
,
T. V.
, and
Gillespie
,
D. R. H.
,
2010
, “
Improved Understanding of Blow-Down in Filament Seals
,”
ASME J. Turbomach.
,
132
(
4
), p. 041004.10.1115/1.3213552
8.
Pekris
,
M. J.
,
Franceschini
,
G.
, and
Gillespie
,
D.
,
2014
, “
An Investigation of Flow, Mechanical, and Thermal Performance of Conventional and Pressure-Balanced Brush Seals
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p. 062502.10.1115/1.4026243
9.
Schlumberger
,
J. A.
,
Proctor
,
M. P.
, and
Hendricks
,
R. C.
,
1991
, “Eccentricity Effects on Leakage of a Brush Seal at Low Speeds,”
Winter Annual Meeting of the American Society of Mechanical Engineers
, Atlanta, GA, Dec.
1
6
.https://ntrs.nasa.gov/citations/19910021906
10.
Carlile
,
J. A.
,
Hendricks
,
R. C.
, and
Yoder
,
D. A.
,
1992
, “
Brush Seal Leakage Performance With Gaseous Working Fluids at Static and Low Rotor Speed Conditions
,”
ASME
Paper No. 92-GT-304.10.1115/92-GT-304
11.
Kirk
,
T.
,
Bowsher
,
A.
,
Crudgington
,
P.
, and
Chupp
,
R.
,
2015
, “
Aspects of Brush Seal Design
,”
AIAA
Paper No. 2015-4230.10.2514/6.2015-4230
12.
Bayley
,
F. J.
, and
Long
,
C. A.
,
1993
, “
A Combined Experimental and Theoretical Study of Flow and Pressure Distributions in a Brush Seal
,”
ASME J. Eng. Gas Turbines Power
,
115
(
2
), pp.
404
410
.10.1115/1.2906723
13.
Chen
,
L.
,
1998
,
Numerical and Experimental Modelling of Brush Seals
,
University of Oxford
,
Oxford, UK
.
14.
Chen
,
L. H.
,
Wood
,
P. E.
,
Jones
,
T. V.
, and
Chew
,
J. W.
,
2000
, “
Detailed Experimental Studies of Flow in Large Scale Brush Seal Model and a Comparison With CFD Predictions
,”
ASME
Paper No. 99-GT-281.10.1115/99-GT-281
15.
Braun
,
M. J.
,
Hendricks
,
R. C.
, and
Canacci
,
V.
,
1990
, “
Flow Visualization in a Simulated Brush Seal
,”
ASME
Paper No. 90-GT-217.10.1115/90-GT-217
16.
Doču
,
Y.
,
2005
, “
Investigation of Brush Seal Flow Characteristics Using Bulk Porous Medium Approach
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
136
144
.10.1115/1.1808425
17.
Crudgington
,
P. F.
,
1998
, “
Brush Seal Performance Evaluation
,”
AIAA
Paper No. 98-3172.10.2514/6.1998-3172
18.
Crudgington
,
P.
,
Bowsher
,
A.
,
Lloyd
,
D.
, and
Walia
,
J.
,
2009
, “
Bristle Angle Effects on Brush Seal Contact Pressures
,”
AIAA
Paper No. 2009-5168.10.2514/6.2009-5168
19.
Pedraza-Valle
,
E.
,
2020
, “
Development of a Rotating Test Facility for the Experimental Characterisation of Turbomachinery Shaft Seals
,”
Ph.D. thesis
,
University of Bath
, Bath, UK.https://researchportal.bath.ac.uk/en/studentTheses/development-of-a-rotating-test-facility-for-theexperimental-char
20.
Doču
,
Y.
,
Sertçakan
,
M. C.
,
Bahar
,
A. S.
,
Pişkin
,
A.
,
Arıcan
,
E.
, and
Kocagül
,
M.
, March
2016
, “
CFD Investigation of Brush Seal Leakage Performance Depending on Geometric Dimensions and Operating Conditions
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032506
.10.1115/1.4031370
21.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1995
, “
Engineering Application of Experimental Uncertainty Analysis
,”
AIAA J.
,
33
(
10
), pp.
1888
1896
.10.2514/3.12742
22.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
You do not currently have access to this content.