Abstract

This paper develops a formalism for optimizing nozzle location/configuration with respect to combustion stability of high-frequency transverse modes in a can combustor. The stability of these acoustically noncompact flames was assessed using the Rayleigh integral (RI). Several key control parameters influence RI—flame angle, swirling strength, nozzle location, as well as nozzle location with respect to the acoustic mode shape. In this study, we consider a N-around-1 configuration such as typically used in a multi-nozzle can system and study the overall stability of this system for different natural transverse modes. Typically, such nozzles are distributed in a uniformly circular manner for which we study the overall RI, and for cases where RI > 0, we optimize the nozzle distribution that can reduce and minimize RI. For a fixed geometry such as a circular configuration, the analysis shows how the flame's parameters must vary across the different nozzles, to result in a relatively stable system. Additionally, for a fixed set of flame parameters, the analysis also indicates the noncircular distribution of the N nozzles that minimizes RI. Overall, the analysis aims to provide insights on designing nozzle locations around the center nozzle for minimal amplification of a given transverse mode.

References

1.
Sewell
,
J. B.
, and
Sobieski
,
P. A.
,
2005
, “
Monitoring of Combustion Instabilities: Calpine's Experience
,”
Progress in Astronautics and Aeronautics, 210, p. 147.
2.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
, Cambridge, UK.
3.
Rayleigh
,
L.
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
,
18
, pp.
319
321
.10.1038/018319a0
4.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
, “
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, American Institute of Aeronautics and Astronautics
,”
American Institute of Aeronautics and Astronautics
, Reston, VA.10.2514/4.866807
5.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
6.
Candel
,
S.
,
Durox
,
D.
,
Schuller
,
T.
,
Bourgouin
,
J.-F.
, and
Moeck
,
J. P.
,
2014
, “
Dynamics of Swirling Flames
,”
Annu. Review Fluid Mech.
,
46
(
1
), pp.
147
173
.10.1146/annurev-fluid-010313-141300
7.
Venkataraman
,
K.
,
Preston
,
L.
,
Simons
,
D.
,
Lee
,
B.
,
Lee
,
J.
, and
Santavicca
,
D.
,
1999
, “
Mechanism of Combustion Instability in a Lean Premixed Dump Combustor
,”
J. Propul. Power
,
15
(
6
), pp.
909
918
.10.2514/2.5515
8.
Blimbaum
,
J.
,
Zanchetta
,
M.
,
Akin
,
T.
,
Acharya
,
V.
,
O'Connor
,
J.
,
Noble
,
D.
, and
Lieuwen
,
T.
,
2012
, “
Transverse to Longitudinal Acoustic Coupling Processes in Annular Combustion Chambers
,”
Int. J. Spray Combust. Dyn.
,
4
(
4
), pp.
275
297
.10.1260/1756-8277.4.4.275
9.
O'Connor
,
J.
,
Acharya
,
V.
, and
Lieuwen
,
T.
,
2015
, “
Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes
,”
Prog. Energy Combust. Sci.
,
49
, pp.
1
39
.10.1016/j.pecs.2015.01.001
10.
Acharya
,
V.
,
Shin
,
D.-H.
, and
Lieuwen
,
T.
,
2012
, “
Swirl Effects on Harmonically Excited, Premixed Flame Kinematics
,”
Combust. Flame
,
159
(
3
), pp.
1139
1150
.10.1016/j.combustflame.2011.09.015
11.
Schwing
,
J.
,
Sattelmayer
,
T.
, and
Noiray
,
N.
, “
Interaction of Vortex Shedding and Transverse High-Frequency Pressure Oscillations in a Tubular Combustion Chamber
,”
ASME
Paper No. GT2011-45246. 10.1115/GT2011-45246
12.
Schwing
,
J.
,
Grimm
,
F.
, and
Sattelmayer
,
T.
, “
A Model for the Thermo-Acoustic Feedback of Transverse Acoustic Modes and Periodic Oscillations in Flame Position in Cylindrical Flame Tubes
,”
ASME
Paper No. GT2012-68775.10.1115/GT2012-68775
13.
Schwing
,
J.
, and
Sattelmayer
,
T.
, “
High-Frequency Instabilities in Cylindrical Flame Tubes: Feedback Mechanism and Damping
,”
ASME
Paper No. GT2013-94064.10.1115/GT2013-94064
14.
Hummel, T., Berger, F., Hertweck, M., Schuermans, B., and Sattelmayer, T., 2017, “High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part II: Modeling and Analysis,”
ASME J. Eng. Gas Turbines Power
, 139(7), p. 071502.10.1115/1.4035592
15.
Méry
,
Y.
,
2017
, “
Impact of Heat Release Global Fluctuations and Flame Motion on Transverse Acoustic Wave Stability
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3889
3898
.10.1016/j.proci.2016.08.009
16.
Acharya
,
V. S.
, and
Lieuwen
,
T. C.
,
2018
, “
Modeling Premixed Flame Response to Transverse Acoustic Modes
,”
AIAA
Paper No. 2018-1182.10.2514/6.2018-1182
17.
Acharya
,
V. S.
, and
Lieuwen
,
T. C.
,
2019
, “
Premixed Flame Response to High-Frequency Transverse Acoustic Modes: Mean Flame Asymmetry Effects
,”
AIAA
Paper No. 2019-0671.10.2514/6.2019-0671
18.
Acharya
,
V.
, and
Lieuwen
,
T. C.
,
2018
, “
Effects of Transverse Nozzle Location on High-Frequency Transverse Combustion Instabilities in Can Combustors
,”
Spring Technical Meeting of the Eastern States Section of the Combustion Institute
, Combustion Institute, State College, PA, Paper No. 36IC-0059.
19.
Acharya
,
V. S.
, and
Lieuwen
,
T. C.
,
2020
, “
Significance of the Direct Excitation Mechanism for High-Frequency Response of Premixed Flames to Flow Oscillations
,”
ASME J. Eng. Gas Turbines Power
,
14
3(1), p. 011005.10.1115/1.4049204
20.
Acharya
,
V. S.
, and
Lieuwen
,
T. C.
,
2020
, “
Sensitivity Studies of Premixed Flame Response to Transverse, High Frequency Disturbances
,”
AIAA
Paper No. 2020-1159.10.2514/6.2020-1159
You do not currently have access to this content.